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“Open world” environments are those in which novel objects, agents, events, and more can 
appear and contradict previous understandings of the environment. This runs counter to the 
“closed world” assumption used in most AI research, where the environment is assumed to be 
fully understood and unchanging. The types of environments AI agents can be deployed in are 
limited by the inability to handle the novelties that occur in open world environments. This 
paper presents a novel cognitive architecture framework to handle open-world novelties. This 
framework combines symbolic planning, counterfactual reasoning, reinforcement learning, and 
deep computer vision to detect and accommodate novelties. We introduce general algorithms 
for exploring open worlds using inference and machine learning methodologies to facilitate 
novelty accommodation. The ability to detect and accommodate novelties allows agents built 
on this framework to successfully complete tasks despite a variety of novel changes to the 
world. Both the framework components and the entire system are evaluated in Minecraft-like 
simulated environments. Our results indicate that agents are able to efficiently complete tasks 
while accommodating “concealed novelties” not shared with the architecture development team.

1. Introduction

Traditionally, AI research has focused on agents operating in “closed worlds” where all task-relevant concepts are assumed to be 
known in advance and designers can utilize this knowledge to construct specific algorithms based on this information [6,21]. Agents 
might still have to learn about instances of these concepts and their distributions, and maybe even cope with out-of-distribution cases, 
but at least they can assume that no conceptual changes will occur to task-relevant aspects that they would have to accommodate in 
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Fig. 1. An example of the gridworld environment. The novel actor is highlighted in blue, while the rest of the environment is known to the agent. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

order to complete their task (e.g., a self-driving car having to discover the concept of a car ferry which it would have to take to cross 
the river in order to get to its goal location as the bridge was just closed for traffic).

The transition from closed to open worlds thus necessitates that artificial agents be able to handle task-relevant novelties as they 
present themselves during task performance. While some of the unknown aspects of the environment might not have any impact 
on the agent’s actions, others might be preventative in that without “accommodating” them, the agent can no longer accomplish its 
task. While accommodation does not necessarily require that the agent be able to detect the unknown aspect (e.g., a detour on the 
road leading directly onto the ferry), in general detection, and in some cases explicit characterization, of the novelty will often be a 
critical component (e.g., no detour, only a road sign suggesting to take the ferry).

The goal for the development of novelty-aware agents thus is to integrate methods into the agent architecture that allow the agent 
to detect novelties and accommodate them. We propose a hybrid symbolic-subsymbolic inference-based approach that at its core uses 
symbolic and subsymbolic statistical inferences to make predictions about possible and likely world states. When these predictions 
fail, the agent assumes that its knowledge about the world is incomplete and might have to be augmented. Depending on the impact 
of the prediction failure on its task performance, the agent might decide to continue with its task and explore the novelty later, or it 
might immediately engage in a comprehensive exploration process during which it attempts to acquire additional knowledge to be 
able to handle the novelty. Depending on the novelty, the agent might be able to generate an explicit symbolic characterization of 
the novelty that will allow it to reason and plan with it, or it might only have an implicit classification that is sufficient for triggering 
actions that utilize or avoid it.

Our contributions in this paper are: (1) An agent-centric categorization of novelties for goal-oriented planning agents, (2) a 
hybrid architectural approach that combines symbolic planning and counterfactual reasoning with reinforcement learning and deep 
computer-vision techniques to perform novelty detection and accommodation; (3) domain-general algorithms for novelty handling 
and explorations using inference and reasoning methodologies that include machine learning techniques; and (4) comprehensive 
evaluations of the agent architecture that range from evaluations of individual components to system evaluations performed by a 
dedicated evaluation team on “concealed novelties” that were not shared with the algorithm and architecture development team.

2. What is a novelty?

We depart from the assumption that novelty is a property of objects as it is sometimes treated in the recent literature on open-
world novelty (e.g., [6]), and instead view novelty as an intrinsically agent-relative concept, i.e., a relation between aspects of an 
environment and an agent’s cognitive system. This is easy to see because what is a novel object or concept for one agent (e.g., like 
a mass spectrometer for a diabetes patient, say, because the agent has not encountered it before or cannot derive any knowledge 
about it) might not be novel for another agent (e.g., the doctor using it to determine the distribution of metabolites). Hence, when 
we talk about novelty in this paper, we always have an epistemic agent in mind for whom something is novel because the agent 
has not experienced it and cannot derive representations of it from its knowledge base (cp. [41]). To better illustrate what kinds of 
novelties an agent might encounter and when it should care about them—when it ought be able to detect and handle them, and 
maybe characterize them to be able to utilize them for their purposes in the future—we will use a simple gridworld environment, 
based on the popular Minecraft game (see Fig. 1) where the agent’s task is to craft a pogostick. We will later use the very same 
environment for comprehensive evaluations of the proposed novelty-aware agent architecture.

The environment contains any number of objects such as trees on which the task-performing agent (just called “the agent”) can 
perform actions such as breaking them into logs, which, in turn, can be crafted into planks and sticks. There is also a crafting-table that 
the agent can use to craft complex items such as a tree-tap and a pogostick using pre-defined crafting recipes. The agent can also mine

diamond from diamond ore. And the environment has a safe which can be used to store items. In addition to objects, the environment 
can also have various actors, i.e., agent types such as traders which can interact and trade items, or the pogoist, an adversary which 
2

competes with the agent in collecting resources from the environment to craft a pogostick.
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Now consider an agent that has knowledge of all aspects of this environment, either through past experience or through having 
been endowed with the knowledge a priori. In other words, nothing in the environment is novel for the agent. Suppose a change is 
introduced while the agent is performing its task, e.g., in the form of new objects, new environment dynamics, new relations, etc. In 
the environment in Fig. 1, a new actor, referred to as supplier (highlighted in blue) was introduced and may have unknown effects on 
the agent’s ability to craft a pogostick.

Depending on the characteristics of the new actor and its relation to the agent, some aspects of it may be novel for the agent. 
For instance, the supplier may relate to objects in the world in previously unknown ways, it may be visually distinct from any actor 
known to the agent, or may behave differently than any other actor previously encountered by the agent. Regardless of the aspect 
of the supplier that is novel to the agent, detecting the novelty can be useful or even necessary if the supplier can affect the agent’s 
ability to achieve its task goals. For example, it may be that

• without interacting with this new actor, it is no longer possible to obtain the required ingredients to craft the pogostick,
• crafting a pogostick is still possible without interacting with the supplier, but the supplier can still assist the agent in crafting 

the pogostick more efficiently, or
• the supplier has no effect on the agent’s task and interaction with it offers no utility to the agent.

To determine which is the case, the agent needs to explore different interactions with the supplier.
In general, novelty-aware agents need to be able to identify situations that are unknown or inconsistent with their knowledge 

of the environment, and have strategies to explore and incorporate new knowledge from those explorations into their knowledge 
representations.

Novelty detection. Novelty detection is the process of identifying representations inconsistent with the agent’s prior knowledge. 
Depending on the knowledge representations that the agent maintains, the process of detecting novelty can vary. For instance, 
the agent encountering the supplier may recognize it as a novel agent by its appearance, which differs from other agents it has 
encountered in the past.

Novelty accommodation. Novelty accommodation, then, is the process of gaining and incorporating new knowledge related to the 
novel aspect into an agent’s knowledge representation. Accommodation might be imperative when the novelty negatively affects the 
agent’s ability to achieve its task. For instance, after visually identifying the supplier, the agent might need to explore interactions 
with it to characterize the supplier’s potential impact on its goals. Different accommodation strategies may be necessary depending 
on whether the supplier is beneficial or detrimental to the agent’s goals and no accommodation is necessary if the supplier has no 
impact on them.

Designers of novelty-capable agents need, to some extent, anticipate novelties to bootstrap the agent to start up with some ontol-
ogy that allows it to carve up the world into different categories. However, the central motivation for developing agent architectures 
and methods that detect, characterize, and accommodate novelty is that in open worlds, designers are not able to anticipate all 
possible states that might constitute novelties for the agent.

Finally, since novelty is an agent-relative concept, an agent might find many novelties that are trivial or not task-related. Further-
more, any given unknown element of the environment can represent a large number of novelties, as not only is the element itself 
unknown, but so may its properties, its relations to other elements, etc. In this work, our agent is task-oriented and so exhaustively 
searches for novelties for the sake of discovering them but only handles them when necessary. This also blocks it from discovering 
many useless novelties (e.g., different arrangements of trees constituting different spatial relationships). However, our architecture 
can, in principle, be used as an information-gathering agent if the goal is to discover as many novelties as possible.

3. Theoretical framework

We start with general definitions of a task environment with agents and objects in order to be able to formally define what we mean 
by “novelty”: a relation between the agent and aspects of the environment (cp. to the definition in [41]). We then define different types 
of novelties based on how they impact an agent’s task performance.

3.1. The formal agent-environment framework

We consider a task environment  = ⟨𝐸,  ⟩ to consist of a (not necessarily finite) set of environmental states 𝐸 and a set 
of time-indexed maps 𝑡 ∶ 𝐸 ↦ 𝐸 for 𝑡 ∈ ℕ that defines the evolution of states, i.e., given a state 𝑒 ∈ 𝐸, 𝑡(𝑒) is the state of the 
environment  at time 𝑡. We can define a reachability relation (𝑥, 𝑦) iff ∃𝑡𝑡(𝑥) = 𝑦 indicating whether a state is reachable from 
another state, given the environmental dynamics. In other words, the environment may contain any number of objects and agents as 
part of its state (e.g., placed in locations for spatially extended environments) with agents differing from objects in that they have 
internal states and can cause state changes through internal (computational) processes while objects are inert without internal states 
3

or internal processes.
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Fig. 2. Overview of the Agent-Environment Interface. The agent represents the environment state symbolically in the language . The agent does not have complete 
knowledge, so a state description can correspond to many true environment states. It also observes the environment subsymbolically. The agent uses an operator 𝑜 of 
its planning domain to transition in the environment to a new state via the executor 𝜒𝑜 .

We define an agent  = ⟨𝜁, Ξ, , ⊢⟩ to be equipped with a set of sensors 𝜁2 that allow it to perceive the environment, 
a set of effectors Ξ

3 that allow it to act upon the environment, a knowledge repository  = (𝐾𝐵, Θ) (potentially empty) that 
can hold different representations, e.g., symbolic descriptions of 𝐸 in some formal language or “subsymbolic representations” like 
sensory or effector states. The knowledge base 𝐾𝐵𝐴 is symbolic and stores knowledge explicitly in terms of facts and rules in a formal 
language. On the other hand, Θ stores knowledge about subsymbolic and neural representations in a distributed manner, such as 
in the weights of a neural network. The agent also has an internal inference operator ⊢ that enables it to perform manipulations of 
its knowledge representations, e.g., to perform different types of inference for different knowledge modalities in . For 𝐾𝐵, we 
define ⊢ to represent a first-order prover that can derive new facts from the 𝐾𝐵, while for Θ we define it to represent a neural 
inference algorithm. In general, at a given time 𝑡, the agent’s sensors will generate agent-internal representations 𝑋 of partially 
observed environment states in 𝐸 and the agent’s effectors Ξ at time 𝑡, given the environmental state, will cause an update to the 
environmental state at time 𝑡 +𝛿, thus implicitly defining a set of “actions” 𝐴 that specify how the agent can affect the environment. 
Actions can be triggered by the agent through its internal inference algorithms (the “agent function”). A note on notation: We will 
drop the agent subscript going forward if it is clear from the context which agent we are referring to.

While the above definitions allow for a diverse array of agent models, we will consider cognitive agents for the rest of the paper that 
can reason and plan using a first-order language (FOL)  while also representing aspects of the environment subsymbolically (e.g., 
visually in images) and reasoning with those representations non-symbolically. The agent has a set of 𝑛 − 𝑎𝑟𝑦 predicates 𝑃 (denoting 
relations or atoms) over a set of variables 𝑉 and constants 𝐶 (with constants, for example, denoting objects or locations in the 
environment). An atom over the language  is represented by 𝑝(𝑢1, … , 𝑢𝑛), 𝑢𝑖 ∈ 𝐶 ∪ 𝑉 and ¬𝑝(𝑢1, … , 𝑢𝑛) its negation. If 𝑢𝑖… 𝑢𝑛 ∈ 𝐶 , 
then 𝑝(𝑢1, … , 𝑢𝑛) is a grounded atom.  can then be used to express knowledge about  such as facts, rules, and relations between 
states in 𝐸.

Agents can perform tasks in the environment using explicit task descriptions defined in a “planning domain” represented as 
Σ = ⟨ , ⟩, where  is a (partial) description in  of states in 𝐸 and  is a set of operators expressed in , with preconditions 𝜓𝑜

and effects 𝜔𝑜, corresponding to (sequences of) actions the agent can perform. Each planning domain operator in  is associated 
with a “lower-level action executor” 𝜒 ∈  defined as a triplet of functions ⟨𝛾, 𝜋, 𝛽⟩ over  . The functions 𝛾 and 𝛽 indicate which 
state descriptions in  are the acceptable start and end state descriptions for the executor 𝜒 and the function 𝜋 ∶  ↦ 𝐴 is a policy 
indicating which actions are taken in each state. The state description of a state 𝑠 ∈  includes information about all the objects 𝑂
and actors Φ in the domain.

Fig. 2 illustrates the distinction between state descriptions, environmental states, and subsymbolic state observations. Symbolic 
state descriptions do not enjoy a one-to-one relation to environment states, as the agent may not be omniscient. As a result, a 
particular state description may correspond to a set of possible environment states. Similarly, subsymbolic state observations 𝑋 (e.g., 
images) also do not fully describe the environment state. The agent uses planning operators 𝑜 ∈ to generate plans. The executor 
𝜒𝑜 ∈  associated with 𝑜 executes actions that, in accordance with the state transition relation , modify the environment state.

A planning task 𝑇 = ⟨Σ, 𝑠0, 𝑠𝑔⟩ defines a set of initial state descriptions 𝑠0 and a set of goal state descriptions 𝑠𝑔 using  in the 
planning domain Σ. The agent , using state descriptions 𝑠 ∈  , along with operators 𝑜 ∈, can use inference ⊢ to produce a plan 
 =

[
𝑜1,… , 𝑜∣|

]
that solves the planning task 𝑇 , indicated by  ⊳𝑇 , if one exists and the agent’s algorithm can find it. We consider 

2 We consider sensors to be maps from the set of environment states 𝐸 and internal (sub)symbolic state representations to internal (sub)symbolic state representa-
tions. This distinction allows for internal states that influence perception.
4

3 We consider effectors to be maps from the internal (sub)symbolic states and environmental states to the internal (sub)symbolic states to environmental states.
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that 𝑃 ⊳ 𝑇 if executing the actions (through executors) corresponding to the operators in  in states consistent with descriptions in 
𝑠0 will take the agent to states consistent with descriptions in 𝑠𝑔 .

3.2. Novelties

Given an environment  , an agent , and a planning task 𝑇 , the agent needs to complete the task 𝑇 . However, it is often the 
case that  does not have complete knowledge of  as there may be aspects of environment states in 𝐸 that cannot be derived 
from the agent’s knowledge repository . As defined earlier, these elements constitute novelty for . Specifically, a representation 
𝜈 of an aspect of an environment state 𝐸 is a novelty for the agent  if  ⊬ 𝜈 where the representation 𝜈 could be in  or a 
subsymbolic representation (e.g., an image). A set of novelty representations4 is represented as  . The process of incorporating 
novelty representations  in the agent’s knowledge repository  is denoted as 𝐾𝐵 ∪ for symbolic representations and Θ ∪ for 
subsymbolic representations of novelties.

The existence of a set  for the agent  can have varying effects on its ability to solve a task 𝑇 and we will define some novelty 
types accordingly:

Definition 1. [Prohibitive novelty] A novelty represented by 𝜈 is prohibitive (for agent  and task 𝑇 ) if for all plans  , 𝐾𝐵 ⊢  ,  � 𝑇 , 
but ∃𝜈 ⊳ 𝑇 and 𝐾𝐵 ∪ {𝜈} ⊢ 𝜈 .

In other words, prohibitive novelties for the agent  are aspects of the environment that the agent needs to represent and reason 
with to generate a successful plan.

Definition 2. [Obstructive novelty] A novelty represented by 𝜈 is obstructive (for agent  and task 𝑇 ) if it causes the execution of an 
executor 𝜒 ∈  to fail.

Obstructive novelties for the agent  thus may or may not impact the agent’s task performance depending on whether the agent 
included the operator associated with the failing executor in its plan. Especially in cases where no other plan can be found, knowledge 
of the novelty might help the agent to either modify the failed executor or replace it with a new working executor.

Definition 3. [Beneficial novelty] A novelty represented by 𝜈 is beneficial (for agent  and task 𝑇 ) if ∃𝜈 𝐾𝐵 ∪ {𝜈} ⊢  such that 
𝜈 ⊳ 𝑇 and ∀ , 𝐾𝐵 ⊢  ,  ⊳ 𝑇 , |𝜈| < ||.

In other words, beneficial novelties for the agent  are novelties whose representations can help the agent solve the planning 
task 𝑇 in fewer steps than its original plan  (alternatively, when action costs are defined for plans, such novelties would result in 
lower-cost plans).

Definition 4. [Nuisance novelty] A novelty represented by 𝜈 is a nuisance (for agent  and task 𝑇 ) if
∀𝜈 𝐾𝐵 ∪ {𝜈} ⊢ 𝜈 such that 𝜈 ⊳ 𝑇 , ∃ ⊳ 𝑇 , 𝐾𝐵 ⊢  and |𝜈 | ≥ ||.

In other words, nuisance novelties for an agent  do not contribute to task performance nor do they obstruct it; they may only 
cause higher performance costs (in terms of plan length, or plan costs if a notion of action cost is defined).

It should be clear from the above definitions that all the novelty types are agent-relative and thus depend on a particular agent’s 
makeup, including sensors, effectors, knowledge representations, etc. Hence, what is a prohibitive novelty for one agent, might be a 
nuisance novelty for another agent or no novelty for yet another one.

The goal for our agent design then is to handle novelties, i.e., when an agent  encounters a novelty represented by 𝜈, it needs 
to assess how the novelty affects its task-solving ability (i.e., prohibitive, obstructive, beneficial, nuisance) and experiment with 
the novelty to expand or correct its knowledge repository . In cases where the agent’s goal is knowledge discovery, exploration 
strategies informed by the detected novelty can be employed to further expand . In goal-oriented settings where task completion 
takes precedence, the potentially intractable number of novelties motivates limiting exploration to cases where task completion is 
compromised, or when there are very strong environmental cues (i.e. passive detection of novelty). In those cases, any additional 
knowledge incorporated into  can then be used for inference to solve its task 𝑇 .

4. An architectural framework for novelty handling

We introduce the architectural framework (depicted in Fig. 3) for developing novelty-aware agents composed of several com-
ponents that, through their function and interactions, define the agent’s knowledge repository , its inference algorithms ⊢, and 
operate its sensors 𝜁 and effectors Ξ.

4 Note that the agent’s symbolic or subsymbolic representational repertoire is a hard limit for the agent’s ability to capture novelties. We are not considering 
5

“growing agents” here that might be able to extend their cognitive system’s representational formalism and capacity.
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Fig. 3. High-level architecture diagram of the relevant components for novelty handling (highlighted in colored boxes) and the information flow among them (see 
text for details).

The agent has a DOMAIN INTERFACE component that mediates its interactions with the environment through the sensors 𝜁 and 
effectors Ξ (this will typically be itself a set of components for different sensors and effectors but we are not concerned with those 
architectural details in this work). Sensory information is organized into symbolic state descriptions 𝑠 ∈  and passed on to other 
components for processing, including recognized actions of other actors in the environment. Additionally, subsymbolic perceptions 
𝑋 (e.g. images) acquired by the sensors are also made available by the DOMAIN INTERFACE.5

The knowledge base 𝐾𝐵 ∈  stores facts using  about the environment as extracted from state description obtained from 
the domain interface, as well as the operators  available to the agent. The GOAL MANAGER and TASK PLANNER are the symbolic 
inference mechanisms of the architecture. The GOAL MANAGER detects novelty by comparing inferred expected state descriptions 
from rules and facts in 𝐾𝐵 to state descriptions obtained through the DOMAIN INTERFACE. The TASK PLANNER generates plans for 
the agent to execute in the environment. The GOAL MANAGER also detects novelty due to plan failure. Whenever novelty is detected, 
it is submitted to the 𝐾𝐵 for further inference and exploration.

The subsymbolic knowledge repository Θ ∈ is composed of the VISION MODEL and AGENT MODEL components, which make up 
the neural inference algorithms of the agent. The VISION MODEL receives subsymbolic state descriptions (e.g., images) and detects 
out-of-distribution samples using statistical methods. The AGENT MODEL receives symbolic state descriptions and, with statistical 
methods, monitors the behavior of other actors in the environment to detect when their behavior is inconsistent with the agent’s 
expectations. When either component detects novelty, it sends a description of the novelty to the 𝐾𝐵.

The NOVELTY EXPLORATION component is comprised of symbolic novelty exploration algorithms, as well as a reinforcement 
learner that can learn policies to form new executors if necessary. It accepts a description of the novelty and symbolic state from the 
𝐾𝐵. It returns sub-goals to the GOAL MANAGER that aim to explore the environment or specifications of operators that can be used 
to aid in solving task 𝑇 . The operation of these components is described in detail in subsequent sections.

4.1. Symbolic inference

Symbolic inference is performed by the GOAL MANAGER and TASK PLANNER on facts and rules from the 𝐾𝐵 to solve task 𝑇 and 
to detect novelties  .

4.1.1. Knowledge base

The knowledge base 𝐾𝐵 ∈  stores facts about symbolic state descriptions  using the language . It is populated with facts 
and rules defined a priori and through interaction with the environment. This may include objects, actors, functions, symbolic state 
representations, and a semantic type hierarchy used to describe planning tasks.

During execution, other components in the architecture may assert, retract or query facts in 𝐾𝐵 to detect novelty, create plans, 
or store new knowledge. The 𝐾𝐵 is part of the knowledge repository  against which novelties are detected. As a result, when 
information about a detected and explored novelty is asserted into 𝐾𝐵, subsequent encounters with it will no longer be novel for 
the agent. This is not limited to novelties detected using symbolic inference, as novelties detected with neural inference are also 
eventually expressed in  and stored in 𝐾𝐵.

5 Ideally, all symbolic information such as state descriptions and recognized actions by other agents would be obtained from a vision or perceptual processing 
module, but because our focus is not on scene descriptions and action recognition from images, we allow the DOMAIN INTERFACE to already provide these pre-
6

processed percepts.
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4.1.2. Task planner

The TASK PLANNER is one of the two symbolic inference mechanisms utilizing the 𝐾𝐵. Once a desired goal state description 𝑠𝑔
is received from the GOAL MANAGER, the TASK PLANNER retrieves a planning domain definition Σ (operators, predicates, etc.) and 
an initial state description 𝑠0 from the 𝐾𝐵 to form a planning task 𝑇 and searches for a plan  ⊳ 𝑇 . Whether a plan is found or not, 
along with the plan itself, is then submitted to the GOAL MANAGER for further inference and execution.

4.1.3. Goal manager

The GOAL MANAGER is responsible for managing the agent’s top-level goal(s), which can consist of multiple concurrent goals, and 
is responsible for detecting novelties in symbolic state descriptions. The component submits goals to the TASK PLANNER and performs 
inference on state descriptions, a process during which novelties of different types may arise due to planning failure, execution 
failure, or unexpected aspects of state descriptions. The general principle for detecting novelty with symbolic inference is predicting 
next environment states and comparing predictions with observed states. Once a novelty is detected, the GOAL MANAGER produces 
a description of it and asserts it to the 𝐾𝐵. Depending on the novelty, the produced description contains information about the 
environment state, the aspects of it that are novel as well as any operators that may exhibit unexpected behavior. Depending on 
the novelty type, the NOVELTY EXPLORATION component (see Section 4.3) may be invoked. The GOAL MANAGER is also the primary 
component communicating with the DOMAIN INTERFACE.

Prohibitive novelty. Prohibitive novelties are most often encountered due to the failure of the TASK PLANNER. For a given goal, the
GOAL MANAGER consults the TASK PLANNER for a plan  to execute. If the TASK PLANNER fails to find a plan for a particular goal, 
assuming that the goal is achievable based on the agent’s knowledge, then the failure may be due to an prohibitive novelty.

Obstructive novelty. Obstructive novelty is most likely encountered due to plan execution failure. Once a plan sequence has been 
generated, the GOAL MANAGER enters an execution phase where it verifies that each operator’s preconditions are met. In this 
inference task, the DOMAIN INTERFACE is consulted to verify that the preconditions 𝜓𝑜 of an operator 𝑜 ∈  hold in the current 
symbolic description of the environment state. If inference on prior states indicates that all of the operator’s preconditions 𝜓𝑜 should 
be met, but they are not in the current state, this constitutes a novelty. If all preconditions are met, the executor 𝜒𝑜 of the operator 
is sent to and executed by the DOMAIN INTERFACE component. The agent may receive feedback through the DOMAIN INTERFACE

component indicating the success or failure of the executor. In case of failure when success was anticipated, this again constitutes 
novelty. Additionally, obstructive novelty may occur even when an executor succeeds, if its effects are not consistent with the agent’s 
expectations.

Beneficial and nuisance novelty. Success in the task does not eliminate the possibility of novelty. The GOAL MANAGER may still 
encounter beneficial or nuisance novelties during its inference of the expected state of the world. If the inferred state does not match 
the observed state of the world solicited from the DOMAIN INTERFACE, then that still constitutes a novelty, regardless of its effect on 
the task. Otherwise, plan execution continues until all operators in the plan have been executed.

In all cases where novelty is detected, a symbolic description of it is asserted to 𝐾𝐵 and sent to the NOVELTY EXPLORATION

component, which utilizes different exploration policies depending on the way novelty is encountered. Novelty descriptions involve 
information about the aspects of the environment state that are novel such as novel objects and unexpected or missing operator 
effects. If the agent’s goal is knowledge discovery, GOAL MANAGER can also enumerate sub-goals for the agent to achieve to test for 
novelty in different environment states or to further explore previously detected novelty. However, in goal oriented environments 
such extensive exploration is limited to novelties that prevent task completion.

4.2. Neural inference

The architecture’s neural inference components are used to detect novelty in the subsymbolic state representations 𝑋 as well as 
in statistical relationships between elements of the state descriptions  .

The knowledge repository Θ ∈ stores the agent’s knowledge of these modalities in the form of machine learning model param-
eters. The first component for neural inference is VISION MODEL, which implements a visual novelty detector based on images from 
the DOMAIN INTERFACE. The second component of neural inference is an AGENT MODEL that models the behavior of other actors 
in the world to detect deviations from their known behaviors. If either module detects model deviations with sufficient confidence, 
a symbolic representation of the hypothesized novelty is submitted to the knowledge base for further inference and exploration. A 
general design principle for neural novelty detectors is an emphasis on caution: Given the distributional nature of neural models, we 
set conservative thresholds for novelty detections to minimize false positives. This is especially important when the agent’s priority 
is task completion, as false positive detections can result in superfluous exploration that may hinder task performance.

4.2.1. Vision model

The VISION MODEL is responsible for detecting visual novelty. At every step, the DOMAIN INTERFACE provides a 2-dimensional 
color image of the agent’s current view of the world. The VISION MODEL’s task is to determine whether each new input image 
represents a plausible view of the known standard environment, or a different “novel” distribution. Some authors refer to similar 
problems as anomaly detection or out-of-distribution detection [47]. Visual novelties could include new object types, new agent 
7

appearances, or new backgrounds. Scene composition properties could also change (sizes, frequencies, relative locations, etc.).
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To solve the detection problem, our VISION MODEL takes a deep autoencoder approach, following Abati et al. [1]. Deep autoen-
coders are often applied to visual novelty detection for their ability to learn effective representations of data through self-supervision 
[43]. The model consists of two component neural networks: an encoder e𝜙 with weights 𝜙 that maps image 𝑋 to a code vector 
𝑧 ∈ ℝ𝐶 , and a decoder d𝜙′ with weights 𝜙′ that maps code vector 𝑧 back to an image 𝑋. After a model is suitably trained (see 
below), given a new image 𝑋̃, the model assesses possible novelty via reconstruction error: 𝑟(𝑋̃; 𝜙, 𝜙′) = ||𝑋̃ − 𝑑𝜙′ (𝑒𝜙(𝑋̃))||2, which 
measures Euclidean distance between the input and its reconstruction. Intuitively, a well-trained model should have low reconstruc-
tion error for images that represent the normal environment used for training, while images containing novelty will yield higher 
error. The effectiveness of this novelty detection method is determined by the separability of the normal and novel reconstruction 
error distributions [45]. The VISION MODEL can pass the reconstruction error signal directly to the Symbolic Inference. Naturally, 
we can also apply a threshold 𝜏 to produce binary detection decisions, where “novelty” is called if 𝑟(𝑋̃) > 𝜏 and “normal” otherwise. 
The value of 𝜏 can be selected on a validation set containing labeled examples of normal and novel data to maximize a performance 
metric of interest.

The VISION MODEL can be trained in advance on a dataset of images depicting the “normal” environment. Given 𝑁 training 
images, we seek encoder and decoder weights 𝜙, 𝜙′ that minimize the total reconstruction error: 

∑
𝑛 𝑟(𝑋𝑛; 𝜙, 𝜙′). This can be solved 

via stochastic gradient descent [1], and the optimal weights 𝜙, 𝜙′ stored within Θ for later processing.
If the VISION MODEL detects abnormal images, it generates a description  that is sent to 𝐾𝐵. The description includes an 

identifier that allows the 𝐾𝐵 to associate a visually-detected novelty with the state description of the environment state in which it 
was observed. Since no additional information is extracted, it is difficult to accommodate novelties that are detected only visually.

4.2.2. Agent model

The AGENT MODEL is a crucial part of the architecture when operating in multi-agent environments. It uses neural inference over 
symbolic state descriptions and is responsible for maintaining knowledge about other actors. The aim of the AGENT MODEL is to 
evaluate whether facts about other agents contained in symbolic state descriptions are consistent with its knowledge of those agents’ 
behavior. One major factor we consider here is the type (e.g. supplier or pogoist from the example in Section 2) of other agents.

Behavioral modeling with behavioral cloning. The main approach of the AGENT MODEL is to model other agents’ behaviors via behav-
ioral cloning (BC).6

Suppose other actors Φ identified in the state descriptions  have actor-types in a set 𝑄, also provided in the state description. 
For each type 𝑞 ∈ 𝑄, the AGENT MODEL learns the policy 𝜋(𝑎|𝑠, 𝑞) of an agent of type 𝑞. It is implemented with a neural network 
nn𝜃(𝑠, 𝑞), which outputs the probability of actions in the action space 𝐴𝑞 of the agent of type 𝑞. Here the input (𝑠, 𝑞) is represented 
as a feature vector. If necessary, other representations such as graphs and text can also be consumed by neural networks. If complete 
knowledge of another actor’s state is not known, then a pseudo-state 𝑠′ can be inferred using knowledge in . Then the model 
becomes nn𝜃(𝑠′, 𝑞) and the action likelihood can be estimated. The model is trained via supervised learning using the true actions 
each actor took at that state (described in symbolic representations). The resulting model parameters 𝜃 are stored in Θ and used to 
evaluate action likelihoods during execution. The exact architecture, hyper-parameters, training procedure and feature representation 
is also application dependent and is discussed in the experiment section.

Unlikely action detection. During operation, the AGENT MODEL uses the learned neural network to monitor an actor’s behaviors and 
detect unlikely actions. Our agent may encounter actors that deviate from their actor-type’s policy. Such an event is inconsistent with 
the agent’s  in the sense that the actors exhibit behavior that is unlikely under the actor policies encoded in Θ. Such novelty can 
be detected by evaluating the likelihood of observed actions using nn𝜃 . Focusing on a single actor of type 𝑞 ∈𝑄 and its action 𝑎 ∈𝐴𝑞

from a symbolic state description 𝑠 ∈  , the likelihood under the learned model is computed by 𝑙 = nn𝜃(𝑠, 𝑞). Then, 𝑙 is compared 
to previously encountered values to decide if 𝑎 deviates from the known distribution. For instance, if nn𝜃 is trained offline with a 
dataset of trajectories from the environment, then a portion of the dataset can be used for validation to set a threshold below which 
actions are considered inconsistent with the model for that actor type.

Actor type classification. Using the model nn𝜃 , the AGENT MODEL can also classify actors into the known actor types 𝑄. During 
operation, a voting scheme over the 𝑄 known actor types is used to classify actors into types using their action likelihoods. The 
voting-based actor type classifier is described in Algorithm 1.

The predicted types can be compared with the types extracted from the symbolic description to determine if some actors deviate 
from their actor types.

If the AGENT MODEL detects novelties due to unexpected actor behavior, it can provide feedback to the rest of the architecture for 
accommodation. It produces a symbolic description 𝜈 that includes the state description in which novelty was detected, any unlikely 
actions detected for each actor in the environment and an indicator of the inferred agent-types using the vote-based classifier, if they 
deviate from those expected. The novelty description is submitted to the 𝐾𝐵 and used for accommodation if necessary.

6 Behavioral cloning [4,11,3] is an offline reinforcement learning technique that learns policies from a dataset of actor trajectories. That dataset can be collected 
8

from repeated interactions with the environment and the policies are learned using supervised learning.
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Algorithm 1 Voting-based actor classification.
1: Inputs:

2: 𝐷 = {(𝑠𝑖, 𝑎𝑖)|𝑖 = 1..𝑀} ⊳ state and actions observations
3: nn𝜃 ⊳ Learned actor policies
4: 𝑄 ⊳ Set of known actor types
5: procedure:

6: 𝐯 ← 0, 𝐯 ∈ℕ|𝑄|
0 ⊳ Vote vector

7: while not empty(D) do

8: (𝑠, 𝑎) ←𝐷.𝑝𝑜𝑝()
9: 𝑏 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑞∈𝑄 [nn𝜃 (𝑠, 𝑞)]𝑎 ⊳ Vote for actor-type 𝑏

10: 𝑣𝑏 ← 𝑣𝑏 + 1
11: end while

12: return 𝑞← 𝑎𝑟𝑔𝑚𝑎𝑥(𝐯) ⊳ Plurality Vote

4.3. Novelty exploration component

The NOVELTY EXPLORATION component receives symbolic descriptions of novelties from the GOAL MANAGER and is responsible 
for generating exploration strategies depending on the type of novelty encountered. These include heuristic search strategies on the 
symbolic descriptions of states (and on failed operators) as well as knowledge-guided reinforcement learning-based exploration to 
learn new executors for existing failed operators.

Knowledge discovery. If the NOVELTY EXPLORATION component receives a novelty description before the agent attempts to generate 
a plan, then the type of the novelty (i.e. how it may impact its ability to solve the task) has not yet been determined. In that case, 
a cursory knowledge discovery routine is utilized to gather information about the encountered novelty. The exploration strategy is 
dependent on the symbolic description of the novelty and can involve exploratory subgoals and operators related to the novelty.7 To 
avoid taking too much time away from the agent’s task, this routine is only given a limited time to run before the agent moves on and 
begins to plan for its main goal. If additional information about the novelty is gathered from knowledge discovery, it is appended to 
the symbolic novelty descriptions  and, if the task is interrupted later on, this information can be used during failure recovery (as 
described in the next section) or knowledge discovery can resume with any exploration strategies of the novelty that it previously 
did not have time for.

For instance, if a novel actor is encountered (see example in Section 2), the NOVELTY EXPLORATION component would submit 
subgoals to the GOAL MANAGER involving interactions with the novel actor. These subgoals are generated using the agent’s type hier-
archy: known operators applicable to known actors are used on the novel actor. Such interactions may reveal additional information 
about the novelty and aid in failure recovery depending on the novelty type.

4.3.1. Failure recovery

The FAILURE RECOVERY component is responsible for deploying recovery strategies for novelty accommodation and is invoked 
when novelty causes a planning or execution failure.8 Depending on the novelty description it receives, it employs various recovery 
strategies to address the particular failure.

Fig. 4 (Left) illustrates the agent’s recovery policies for different failure cases attributed to novelty. Special attention is paid when 
novelty is attributed to the effect failure of an operator. Fig. 4 (Right) shows in detail the strategies employed when an operator’s 
known effects are inconsistent with the state description after its execution. Depending on the severity of the failure, the agent 
employs different recovery strategies. If the state description is consistent with only a subset of the operator’s effects (partial effect 
failure), then the 𝐾𝐵 is updated with the new effects, and the agent attempts to replan. If instead, none of the operator’s effects 
are observed (total effect failure), the agent attempts to discover new operators that may assist it in solving the task. This process 
involves hypothesizing new preconditions, a heuristic search over known operators to uncover unknown effects, and a reinforcement-
learning-based exploration methodology that learns new executors for failed operators. These strategies may be executed in the order 
presented, or may be applied to novelties at any order depending on the domain implementation and novelty descriptions. Overall 
the failure recovery policies are general and flexible, as each may be involved in recovery from multiple novelty types and they can 
be composed to recover from complex failures.

The rest of this section discusses the use of these recovery policies in the context of the novelty types described in Section 3.

Recovery from prohibitive novelty. If the TASK PLANNER fails to produce a plan, then the NOVELTY EXPLORATION component follows 
its plan failure policy that employs knowledge discovery. It generates and executes sub-goals to acquire additional information about 
plan failure. The generated exploration subgoals attempt to prioritize operators that explore currently unobserved environment states 
to update (if necessary) the agent’s prior knowledge about those states. If knowledge discovery fails to produce a plan, the NOVELTY 

7 For example, the operators can be selected using the agent’s type hierarchy: If the novelty is a previously unknown property of a known object, then operators 
applicable to that object may be attempted. Similarly, if the novelty involves novel actors, appropriate operators may be invoked.

8 It should be noted that the word failure is used to describe a failure in the agent’s knowledge and inference to describe the environment, not necessarily a failure 
9

in the task.
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Fig. 4. Diagrammatic representation of the agent’s recovery policies. (Left) The recovery policies initiated under different failure conditions. (Right) Outline of specific 
strategies of the failed operator policy (concerning the failed effects of the operator). Different recovery policies are initiated depending on how novelty is encountered, 
and individual strategies may apply to multiple novelty types.

EXPLORATION component utilizes the EXECUTOR LEARNER to discover states from which the agent can produce successful plans to 
solve the task.

Following the gridworld example from Section 2, consider a scenario in which the crafting table, an object essential to task 
completion, is not present in the symbolic state description. In that case, the agent fails to plan and needs to explore the environment 
to find alternate solutions for task completion. For instance, the agent may investigate ways to acquire a crafting table, such as, 
opening the safe, visiting other rooms or by interacting with other actors. The agent can then attempt to replan if a way to acquire a 
crafting table is discovered.

Recovery from obstructive novelty. The two conditions associated with obstructive novelty are handled using different exploration 
strategies.

Precondition failure. As discussed previously, novelty due to unmet preconditions indicates that the agent’s knowledge of the 
environment state is inaccurate. Therefore, the recovery strategy updates the agent’s 𝐾𝐵 with the accurate state description obtained 
through the DOMAIN INTERFACE. It then prompts the task planner to re-plan.

For instance, a novel actor in the environment may interfere with the agent’s resource gathering by stealing resources before the 
agent can collect them but after forming a plan to do so. As a result, the preconditions for that operator no longer hold true (e.g., 
resources are no longer available). In this scenario, the agent should update its 𝐾𝐵 with the accurate state description and attempt 
to re-plan.

Partial Effect failure. If all the preconditions of an operator are met, the operator is executed, and the operator’s effects are 
compared against the symbolic state description. If a subset of the effects are inconsistent, the GOAL MANAGER infers that the effect 
specification of the operator may be inaccurate. The FAILURE RECOVERY component then proceeds with recovery strategies as shown 
in Fig. 4 (right).

The failed effects recovery procedure attempts to repair an operator 𝑜 ∈ with unexpected effects 𝜔. The agent applies strategy 
1 in Fig. 4 (right), which first updates the operator description in the 𝐾𝐵 to be consistent with its observed effects and then attempts 
to re-plan.

Total effect failure. If instead there are no observed effects after executing the executor of an operator, the operator itself 
can be said to have failed. The NOVELTY EXPLORATION component has a series of strategies to repair the failed operator. The first 
strategy is the same as used for the partial effect failure: the agent updates the operator to reflect that no effects occur and replans. 
Another strategy (labeled as Strategy 2 in Fig. 4 (right)) involves repeated attempts to execute the operator to account for instances 
of circumstantial failure. More substantial novelty exploration occurs when the agent utilizes the OPERATOR DISCOVERY component, 
which employs knowledge-guided search strategies to discover new operators to solve the task. The OPERATOR DISCOVERY component 
is discussed in detail in Section 4.3.2.

An example of total effect failure occurs in a more complex variant of the supplier novelty scenario discussed in Section 2, where 
the supplier offers to trade the agent a pogostick in return for all the usual ingredients that the agent would use to craft the pogostick. 
When the agent initially uses Knowledge Discovery to investigate the new actor in the world, it will interact with the supplier, receive 
the trade offer, and incorporate the trade operator into its knowledge base. Since this method of obtaining a pogostick is as efficient 
10

as simply crafting one (the agent needs to gather all the ingredients either way), the agent may ignore the supplier and continue with 



Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

its usual plan of crafting the pogostick. If the crafting operator fails when the agent attempts to craft, the novelty is determined as 
obstructive. When the agent attempts to re-plan as part of the Failed Effects recovery policy, it will use the knowledge gained from 
interacting with the supplier earlier to create a new plan to obtain the pogostick via the supplier.

Recovery from beneficial and nuisance novelties. Novelty due to unexpected operator effects is not necessarily obstructive. If there are 
different effects than expected, rather than no effects at all, it may be that the novel effects are irrelevant or even beneficial for task 
completion.

Partial effect failure. As discussed in the recovery for obstructive novelties, when an operator’s effects are inconsistent with the 
world state, one of the agent’s accommodation strategies is to modify the operator’s description in 𝐾𝐵 to be accurate with respect to 
the environment state descriptions. As a result, when the agent replans, the planner will automatically take advantage of beneficial 
novelties if they allow a shorter plan to be created. Similarly, the planner will automatically not involve nuisance novelties in plans.

The agent may encounter a beneficial novelty in a scenario in which the supplier (referring to the example discussed in Section 2), 
upon interaction, directly provides the agent with the pogostick at no cost. During Knowledge Discovery, the agent may interact with 
the new actor and immediately encounter an Effect Failure when it observes the unexpected effect of receiving a pogostick. This 
results in a new operator being created, which the agent can in the future use to acquire a pogostick very quickly.

4.3.2. Operator discovery

In cases when prohibitive or obstructive novelties are attributed to operator failure, the agent needs to discover new operators 
that may allow it to solve the task.

Precondition discovery. The first strategy to discover new operators involves precondition exploration. For a given failed operator 
𝑜 ∈  with preconditions 𝜓𝑜, a new operator 𝑜′ is constructed with the same effects and executor as 𝑜 but with a new set of 
preconditions. The new preconditions 𝜓𝑜′ are constructed using a priority-based order9 of all possible preconditions encountered in 
. The preconditions are added to 𝜓𝑜′ one by one, and goals are submitted to the GOAL MANAGER to satisfy them and attempt the 
new operator 𝑜′. If the operator succeeds, the broken operator 𝑜 is replaced with this new operator 𝑜𝑖 and added to 𝐾𝐵.

In the earlier gridworld example, consider a scenario where trees cannot be broken into logs without the agent holding a tool, even 
though the agent’s prior experience suggests it is possible. In this scenario, precondition discovery will consider a new precondition 
of holding a tool before breaking a tree, as the agent knows that holding a tool is a precondition for breaking other resources in the 
environment.

Operator variations If the precondition discovery fails to produce a working operator, the agent actively searches for known operators 
with unknown effects. This process is guided by the agent’s type hierarchy and has two phases. In the first phase, the agent attempts 
(compatible) operators with the same parameters as the failed one. For example, if the operator for breaking a tree is no longer 
working, the agent will attempt other operators that accept trees as a parameter to test if any of these operators also yield unexpected 
effects. In the second phase, the agent prioritizes operators that act on different parameters of the same type as the failed operator. 
In a situation where trees come in different types, if the break operator failed on a birch tree, the agent may attempt to interact with 
an oak tree, as it belongs to the same type as the birch, to see if the operator failure is consistent across tree types. If any operator 
produces unexpected effects, a new operator 𝑜′ is added to 𝐾𝐵 with those effects noted, and the agent re-plans.

If both precondition discovery and operator variations fail to produce an operator that enables a successful plan, then the agent 
attempts to learn a new executor for the failed operator using knowledge-guided reinforcement learning.

4.3.3. Knowledge-guided executor learner

Due to the exponentially large search space of precondition discovery and operator variations, the agent cannot exhaustively 
search that space. After expending some effort in those directions to no avail, a more intelligent search strategy is employed to create 
a new executor for the failed operator. That way, the agent can discover ways to achieve a desired effect that would assist it in 
solving the task.

The executor learning component employs reinforcement learning10 [53], with a reward function encoding the failed operator’s 
desired effects. A new operator is then created with preconditions derived from the state description where the failure occurred 
and effects identical to the failed operator. The learned policy is used as the new operator’s executor, and the agent can use it to 
reach a state from which it can plan and complete the task. The algorithm used, called RAPid-learn [16], uses knowledge-guided 
exploration informed by the novelty. The component receives symbolic state descriptions 𝑠 ∈  and novelty descriptions  from the 
goal manager and temporarily guides the agent’s behavior to explore the environment.

9 The Preconditions can be ordered in many ways. For instance, they can be ordered by their frequency in known operators or using domain-specific heuristics. 
The specific implementation details for our agent instantiation in the evaluation environment can be found in the appendix.
10 In RL, an agent interacts with its environment to achieve a goal specified by a reward function 𝑅. These problems are characterized using an episodic Markov 

decision process (MDP)  = ⟨̃ , 𝐴̃, 𝑅, 𝜄⟩, where ̃ is a set of subsymbolic states, 𝐴̃ is a set of actions, a reward function 𝑅 translates state-action pairings to scalar 
rewards. The agent aims to learn a policy 𝜋𝜇(𝑎̃|𝑠̃) (parameterized by 𝜇), maximizing its discounted return 𝐺𝑡 =

∑𝐾

𝑘=0 𝛾
𝑘𝑅𝑡+𝑘+1 until the end of the episode at timestep 
11

𝐾 .
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Algorithm 2 Executor learner (𝑇 ,  , 𝜔𝑜, 𝑠𝑓 ) → 𝑥𝑛𝑒𝑤.

1: Inputs:

2: 𝑇 = ⟨Σ, 𝑠0, 𝑠𝑔⟩ ⊳ Symbolic Planning Task
3:  ⊳ Plan  = {𝑜1, 𝑜2, ..., 𝑜||}
4: 𝑁𝑒𝑝𝑠 ⊳ Number of episodes
5: 𝜂, 𝜔𝑜, ̃𝑠𝑓
6: Procedure:

7: 𝛾(𝑠): initiation indicator ⊳ computed from 𝑠𝑓
8: 𝛽(𝑠): termination indicator ⊳ computed from 𝜔𝑜

9: Construct MDP  = ⟨̃ , ̃, 𝑅, 𝛾⟩ using 𝑇
10: for 𝑁𝑒𝑝𝑠 episodes do

11: 𝜋new
𝑜

←Train(, 𝑇 , 𝛽) ⊳ Train in 
12: if success(𝜋𝑜

𝜇
, 𝑇 ) > 𝜂 then

13: 𝜒new←⟨𝛾, 𝜋𝑜
𝜇
, 𝛽⟩ return 𝜒new

14: end if

15: end for

16: return failure

Policy learning for failed executors. The procedure for learning a new executor is described in Algorithm 2. Consider a plan  which 
fails during the execution of an executor 𝜒𝑜 ∈  of an operator 𝑜. Assuming prior accommodation strategies failed, the learner 
is invoked to learn a new policy 𝜋𝑜

𝜇
parameterized by 𝜇 to replace the policy of the executor 𝜒𝑜. First, two indicator functions 

𝛾, 𝛽 are defined over symbolic descriptions  to indicate whether a given state 𝑠 is an acceptable initial or final state for the 
policy (Algorithm 2 lines 7 and 8). Then, an MDP  can be defined with a reward function 𝑅 (Line 9) that provides a positive 
reward when the agent reaches states that satisfy the effects 𝜔𝑜 of the failed operator 𝑜, and from which a successful executable 
plan to the goal state exists.11 The policy is represented with a neural network that accepts 𝑠̃ ∈ ̃ , which is a domain-dependent 
representation of the symbolic state description 𝑠.12 The policy 𝜋𝑜

𝜇
is trained by repeated interaction with the environment through 

reinforcement learning until it achieves a predefined success rate (line 12).

Knowledge-guided exploration of novelties. An important feature of the executor learner is its knowledge-guided exploration strategy. 
Using a description of novelties  , the exploration strategy of the RL learner is biased towards states and actions that are related to 
the novelty.13 For instance, if the presence of a novel object is detected in the environment, the RL learner may be encouraged to 
explore actions on that object. The knowledge-guided exploration improves the efficiency of exploration and makes the plan recovery 
process easier. Once a new policy 𝜋𝑜

𝜇
for the executor 𝜒𝑜 is learned, the resulting operator is stored in the 𝐾𝐵. The parameters of the 

policy 𝜇 are stored in  and retrieved when 𝜒𝑜 is executed.

5. Comprehensive evaluation

We conducted comprehensive evaluation experiments of the proposed novelty-aware architecture framework discussed in Sec-
tion 3, evaluating core components of the framework as well as integrated agents. The details of the agent implementation, the 
simulation setup, and the hardware used for the evaluations can be found in the Appendix.

We start with a description of the two evaluation simulations followed by an overview of the experimental methodology and the 
evaluation results. Overall, evaluations were performed in multiple trials where the agent had to perform the crafting task in different 
random environmental settings (with different numbers of objects, etc.) divided into two phases: an initial “pre-novelty” phase (i.e., 
a varying initial number of trials with only known entities and dynamics) and a “post-novelty” phase (i.e., a set of trials where 
something novel to the agent was introduced in all trials). The agent’s knowledge repository  was initialized with the information 
required to not only solve the task, but anticipate the outcome of every interaction in “pre-novelty” environments. The agent needed 
to modify and augment its knowledge for most “post-novelty” environments to be able to solve the task.

5.1. Evaluation setting

We used the Polycraft World domain [19] as a partially observable, multi-agent environment for the agent evaluations. Polycraft 
World is a “Minecraft mod” consisting of a multi-agent (cooperative and adversarial) turn-taking grid-world game where an agent 
competes with actors for resources to perform various crafting tasks. To accomplish a task like crafting a pogostick, an agent must 
explore the environment to perform a series of sub-tasks that involve collecting and crafting the needed materials for constructing a 
pogostick. Sub-tasks include:

11 Each time the agent satisfies the effects of the failed operator, the task planner is called to produce and execute a plan to reach the goal state. If the plan is 
executed successfully, a positive reward is given.
12 𝑠̃ can take any form depending on the domain in question, such as a vector, graph, text, etc.
12

13 Further details on knowledge-guided exploration are available in the original publication of RAPid-Learn [16].
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Fig. 5. Snapshot of the evaluation environments. Left: Novelgridworlds, Right: Polycraft.

• mining trees, diamond, and platinum,
• trading with trader actors,
• crafting intermediate objects, including a tree tap,
• placing tree tap on a tree and collecting rubber from it,
• collecting a key from a chest,
• opening a door and navigating to another room to find a safe,
• unlocking a safe and collecting items from it,
• crafting a pogostick.

The agent can execute movement commands (turn, walk, and teleport), interaction commands (select-item, use, break-block, craft, 
collect, place, delete, trade, and interact), and sensing commands to make observations of the world state, including the direction 
the agent is facing, inventory items, and locations of every object and actor in the room occupied by the agent.

For the particular Polycraft World domain used here (shown in Fig. 5 right), each trial instantiates the environment with a random 
configuration that includes two to three rooms of varying sizes, one rival pogostick building actor (“pogoist”), two trader actors, and 
resources in the environment (e.g., trees, platinum blocks, diamond ore, a safe containing diamonds, a crafting table, and a chest 
containing a key). The rival pogoist actor is competing for resources, whereas the trader actors, when interacted with, offer recipes 
for possible trades (e.g., 18 diamonds for one platinum block) and will trade with the agent if it has the requisite materials.

The agent starts each trial with an iron-axe in its inventory, which must be equipped to mine diamond ore and platinum blocks, 
and only perceives information within the room it is currently in.

We used ten broad categories of novelties as shown in Table 1.14 In total, evaluations include 288 novelties from the 10 categories, 
of which 216 were known during the development of the agent. Each novelty scenario is associated with three novelty tournaments, 
and each tournament is composed of 50 task instances (i.e., episodes) where the first 5-20 episodes (a random number 𝑛 is selected 
between 5 to 20) do not contain novelty (i.e., pre-novelty phase) and the subsequent 30-45 episodes (i.e., post-novelty phase) contain 
the novelty being evaluated. In addition to the novelty tournaments, three no-novelty tournaments are included in the evaluation, 
each consisting of 50 unique no-novelty task episodes. In each tournament, the agent receives a positive reward for completing the 
task (e.g., obtaining a pogostick), and every action the agent takes has an associated negative cost. A cumulative score for the agent’s 
performance is calculated by subtracting the negative cost assigned per action from the positive reward assigned for completing the 
task. The agent is awarded a score of zero in the episodes where it fails to achieve the task. The episode in which the agent reported 
novelty was also recorded. For comparison, the evaluation team used a non-novelty aware fast-forward planner agent otherwise 
unrelated to the evaluated agent to generate standard performance scores for the pogostick task. The non-novelty aware control 
agent achieved scores within 15% of the evaluated agent scores on pre-novelty episodes and had significantly decreased performance 
in post-novelty episodes.

Metrics for tournament-based evaluations. To evaluate our agent in tournament-based evaluations in the Polycraft domain, we define 
metrics to measure its novelty detection and novelty accommodation performance. The metrics are defined as follows:

• False Negatives (𝐹𝑁𝐶𝐷𝑇 ): How many episodes on average after novelty has been introduced, does the agent fail to report 
novelty? A perfect score of 0 is obtained if novelty is reported in the first post-novelty episode.

• Correctly Detected Trials (CDT%): Boolean for each trial. True for every trial where the agent i) reports novelty after novelty has 
been introduced and ii) does not report novelty before novelty is introduced.

• False Positives (FP%): Boolean for each trial. True for every trial where the agent reports novelty before novelty is introduced.

14 This categorization should not be confused with the novelty types described in Section 3. Moreover, this categorization is not necessarily exclusive as the novelties 
may generally belong to one or more of these categories. Nevertheless, to better motivate the discussion for novelty handling capabilities of an agent, we categorize 
13

them.
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Table 1

Descriptions of the novelties categories with examples used for the comprehensive evaluation in Polycraft.

Category Description Example

Object A new entity in the environment that does not have goal-oriented 
behavior.

A new block type ‘fence’ is added that obstructs access to trees

Attribute Changes to the properties of previously-known entities in the 
environment.

A new tree variant ‘birch’ is added that can not produce rubber with 
a tree tap

Representation Changes to how previously-known entities are specified in sensory 
percepts.

Item names are partially scrambled

Actor A new entity in the environment that does have goal-oriented 
behavior.

A new entity ‘thief’ is added that steals items from your inventory

Action A new goal-oriented behavior of a previously-known environmental 
agent.

The Pogoist agent now trades items instead of the Traders)

Relation A new static property of the relationships between multiple entities. Traders now spawn in different areas of the arena)
Interaction A new dynamic property of behaviors or actions that impacts multiple 

entities.
Traders are now ‘busy’ sometimes when the player interacts with 
them

Environment A new element of an open-world space that may impact the entire 
task space and is independent of a specific entity.

The new element ‘wind’ is present in various regions of the arena 
and alters player movement

Goal A new objective of goal-oriented behavior for an environmental actor. The Pogoist changes the resources it is seeking
Event A new state change or series of state changes that are not each the 

result of volitional action by an agent/actor.
Trees rot and regrow over time

• Novelty Reaction Performance (NRP%): Average post-novelty task score for the agent divided by the average pre-novelty task 
score of the non-novelty aware control agent.

• Goal Achieved (GA%): Percentage of post-novelty tasks in each tournament where the agent achieved the goal.

We also use a previously developed “openAI gym” environment called Novelgridworlds [17] for component evaluations (shown in 
Fig. 5 left). Specifically, we implemented the same pogostick task in Novelgridworlds and developed several novelties for algorithm 
prototyping, internal evaluations, and showcasing important characteristics of our cognitive architecture. The need for a separate 
evaluation platform was due to the need for a tight development loop between designing novelties the agent could not handle 
and, subsequently, improving the agent’s algorithms to master them (which was not possible in Polycraft). More importantly, many 
novelties designed by the evaluation team in Polycraft were purposely concealed and not accessible to the architecture development 
team in an effort to avoid any subconscious biases being introduced into the algorithm developments. Additional standard metrics 
are used for component-wise evaluations.

5.2. Component-wise evaluation

A component-wise evaluation is performed for various components of the architecture to comprehensively evaluate important 
aspects of the architecture. The VISION MODEL is evaluated on its ability to detect novelties in images of the Polycraft environment 
in a two-stage evaluation. The AGENT MODEL is evaluated in Polycraft shared novelties that involve actors with changed behavior. 
The EXECUTOR LEARNER is also evaluated separately in the NovelGridworlds environment to evaluate its efficiency in recovering 
from execution failures.

5.2.1. Vision model evaluation

Vision model training. We train our vision models on a custom open-access dataset called NovelCraft [13], which contains over 
10,000 256 × 256 pixel RGB images from our agent’s perspective as it solves the pogostick building challenge within the Polycraft 
world. Rather than apply encoder and decoder to the entire image, we instead process patches of size 32 × 32 pixels. Patch-based 
autoencoders are faster and easier to train and maintain, while being at least as accurate as whole-image models in our tests [13]. 
For encoder and decoder, we use the specific network architectures in Abati et al. [1], with latent code size of 100. Hyperparameter 
search for architectural choices, learning rates, etc. was informed by NovelCraft’s separately available validation set of images. 
Further details on training and implementation are available in the appendix and in Feeney et al. [13].

Two-round evaluation. Given our trained model, two distinct rounds of evaluation were then performed. First, an initial known-

novelty evaluation was performed on the test set of the NovelCraft dataset [13]. While this is a predefined split whose images and 
novelties are distinct from the training set, the possible novelties in this test set were known to our team during model design, so we 
call this a “known-novelty” evaluation. There are 21 normal episodes and 440 novel episodes, where new novel object types, such as 
JukeBox or TNT, are inserted into the Polycraft environment. In total, 51 different object type novelties are used (for a full listing, 
see Appendix A of [13]).

Next, an additional unknown-novelty evaluation was conducted using a set of Polycraft novelties designed by an external team. We 
had no prior knowledge of these novelties during model development, which makes for a more robust assessment. This evaluation 
grouped 50 episodes into tournaments, with a set of normal episodes followed by a set of novel episodes depicting the same novelty. 
The transition from normal episodes to novel episodes occurs randomly, but there are 15 normal episodes on average. Tournaments 
14

for 9 different visual novelties were conducted with an additional tournament composed of 50 normal episodes. Three tournaments 
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Fig. 6. Input and output example from the patch-based autoencoder of the agent’s VISION MODEL. The image 𝑋 obtained through the DOMAIN INTERFACE (left) is 
segmented into patches and reconstructed by the autoencoder (middle). The reconstruction error (right) is used as a signal to detect novelties, with higher values 
(lighter) indicating regions more likely to contain unknown visual elements.

Table 2

Visual novelty detection results on the known-novelty test set (from 
NovelCraft) and the unknown-novelty test set (content unknown to 
us during model development). We report performance at different 
thresholding choices selected on the known set. Mismatch between 
the novelties depicted in the evaluations results in the model yield-
ing a lower than expected precision (PPV) on the unknown set while 
maintaining reasonable true positive rate (TPR).

Evaluation TPR TNR PPV

Known Set (TPR 95%) 95.0 31.3 88.7
Known Set (PPV 95%) 66.5 80.6 95.0
Unknown Set (PPV 95%) 84.9 70.5 85.1

were randomly generated for each setting, resulting in 30 tournaments and 1,500 episodes total. In both evaluations, the model 
observes all of the episode’s image patches then outputs a single real-valued novelty score for the whole episode. This novelty score 
is the model’s prediction of the likelihood of a novelty appearing anywhere in the episode. For simplicity, the model computes 
a per-patch novelty score for each image patch in the episode using the reconstruction error signal from the deep autoencoder, 
then reports the maximum score over all frames. Fig. 6 showcases an example of its operation. Future work could pursue more 
sophisticated aggregation strategies across frames.

Evaluation criteria. The model is evaluated on the true positive rate (TPR, aka recall), the true negative rate (TNR), and the positive 
predictive value (PPV, aka precision) of the per-episode visual novelty detector. Given the count of true and false positives (TP and 
FP) as well as true and false negatives (TN and FN) the metrics are defined as:

TPR = TP
TP + FN

, TNR = TN
TN + FP

, PPV = TP
TP + FP

Evaluating these rates at chosen operating thresholds is more informative than area-under-the-curve metrics when making binary 
judgments of normal or novel [13]. The known-novelty evaluation examines two possible ways to select a threshold. First, the 
novelty score threshold is chosen to achieve 95% TPR on the NovelCraft test set to examine performance when avoiding false 
negatives matters most. Second, the novelty score threshold is chosen to achieve 95% PPV to examine when avoiding false positives 
matters most. The unknown-novelty evaluation uses the latter threshold to prioritize preventing false positives on the unseen set of 
novelties.

Results. Table 2 quantifies the visual novelty detection performance. The known-novelty evaluations show that enforcing a TPR of 
95% maintains a good PPV but results in a low TNR. A much better performance in terms of TNR is achieved by enforcing 95%
PPV while the TPR decreases in this regime. Reusing the same 95% PPV threshold in the unknown-novelty evaluation performs well 
despite having a 85.1% PPV. The TPR is increased by 14.4 percentage points with only a 10.1 percentage point decrease in TNR.

The results show that focusing on high TPR values comes at the cost of a low TNR - although many novel episodes are detected as 
novel, comparably many normal episodes are considered to be novel too. By emphasizing high PPV, the performance in terms of TNR 
is significantly improved while a similar TPR is maintained. Compared to the high TPR regime, less normal episodes are reported as 
novel but some of the novel episodes are missed.

The threshold for the high PPV regime in the unknown-novelty evaluations is the same as in the known-novelty evaluation. 
However, PPV and TNR are decreased while TPR is increased. This suggests that novelties in the unknown-novelty evaluation are 
easier to detect than object novelties and that the unknown-novelty evaluation includes more normal episodes depicting the normal 
15

environment in a way that was not present to a great extent in the validation set.
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Table 3

Tournament-wide (left) and episodic (right) AGENT MODEL

evaluations using only detections from the AGENT MODEL on 
actor-related novelties.

Tournament-wide Episodic

Metric Value Metric Value

CDT% 64.71% F1 0.728

𝐹𝑁𝐶𝐷𝑇 0.36 Precision 0.997
FP% 2.94 Recall 0.573

Discussion. The results demonstrate some of the challenges when applying visual novelty detection methods for automated binary

novelty decisions - a threshold must be chosen based on available validation data. There is a tradeoff between prioritizing avoiding 
false negatives and avoiding false positives and a threshold might need to be chosen specifically for the given task [13]. Furthermore 
one must keep in mind that results achieved on the validation set might differ from the expected performance on a test set if the sets 
deviate “too much” from another. Detecting novelties in Polycraft is a challenging problem - novel episodes hardly ever show the 
novelty in a focused, large and central manner. A novel input image shows a complex scene in which the novelty might be depicted 
on only a very small fraction of the scene’s content while large image regions are occupied by normal objects, agents and textures. 
The novelty can be far in the back of a scene or partially occluded. However, for open-world applications, the detection of novelties 
in these scene-based scenarios is crucial.

In future work, novelty descriptions produced by the VISION MODEL could further inform novelty exploration strategies to verify 
suspected novelty. For instance, potential novelties, identified by increased pixel-level image reconstruction errors, could be examined 
in more detail by including localization information in the novelty descriptions which the agent could use to better focus exploration 
efforts.

5.2.2. Agent model evaluation

Using the novelties shared in the Polycraft environment, the AGENT MODEL’s detection capabilities of actor-related novelties 
are evaluated. From the total of 36 novelties shared, 7 are selected that involve known actors that exhibit altered behavior. These 
novelties originate from the Actions and Goals15 categories. Each environment is associated with 9 tournaments and the novelties 
are spread over 3 sub-variants, yielding a total of 63 test tournaments. Each tournament is run for 30 games, yielding a roughly equal 
split between pre- and post-novelty episodes in each tournament.

Evaluation criteria. The novelty detection performance of the AGENT MODEL alone is evaluated using both the tournament-wide 
detection metrics on the episode-level standard anomaly detection metrics. Further analysis reveals strengths and weaknesses of the 
agent model which are discussed using two examples of novelty from the Polycraft environment.

Model training. The AGENT MODEL is trained and validated on trajectories generated by randomly repositioning objects in the initial 
states of the 100 no-novelty environment configurations provided in the Polycraft repository. In total, 1000 trajectories are generated 
and 80% of the trajectory steps are used for training and the remaining 20% for validation and threshold calculation. AGENT MODEL

is evaluated by running the architecture on the novel environment configurations and recording only the novelties detected by the
AGENT MODEL. Additional implementation details are available in the appendix.

Tournament-wide results. Table 3 (left) quantifies the novelty detection performance of the AGENT MODEL in tournament-wide 
metrics. The AGENT MODEL is able to correctly identify novel trials in the majority of the novelties. It is consistent in its detections, 
only producing a small number of false negatives in correctly detected trials. Additionally, its tournament false positive rate is low, 
which makes it a viable addition to the symbolic novelty detection system which tends to produce very few false positives.

Episode-level results. Table 3 (right) shows the episodic evaluation of the AGENT MODEL detector. As suggested by the tournament-
wide evaluation, the agent has strong performance and is generally cautious, producing a very small number of false positives as 
evident from its high precision score. However, its weaker recall indicates that there are many episodes where the AGENT MODEL

fails to detect novelty. As indicated by the prior analysis those cases seem to be concentrated in environments where interaction is 
required for the novelty to be made apparent. This suggests that the architecture would benefit from tighter integration of its AGENT 
MODEL and its planner and knowledge base.

Discussion. A more thorough investigation of the results reveals that the AGENT MODEL exhibits high variability across different 
novelties, with nearly perfect detection performance in some novel environments and worse performance in others. One way to 
distinguish which novelties the AGENT MODEL can reliably detect is whether the behavior change of actors is dependent on interaction 

15 The actors category typically involves actors of novel types, detection of which is handled with symbolic inference as they are included in the symbolic state 
16

descriptions.
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Table 4

Component-wise evaluation results comparing the GA% of the Base agent and 
the Base+EXECUTOR LEARNER agent on the four novelty scenarios evaluated in 
Novelgridworlds.

Novelty\Agent Base GA% Base+EXECUTOR LEARNER GA%

This is just random... 2.0 21.0
Convince me. 0.00 59.0
Sapling can’t grow here! 5.0 10.0
Show me your card first. 0.00 21.0

with the agent. Novelties that arise from a change in actor behavior independent from the agent’s actions are consistently detected 
by the AGENT MODEL, whereas novelties that require interactions to manifest are more difficult to detect.

One example of a novelty type in Polycraft that the AGENT MODEL consistently detects, involves a pogoist-type actor altering its 
resource-gathering strategy. This change is detected by the AGENT MODEL as a set of actions that are very unlikely under the learned 
policy for that agent type. As a result, the AGENT MODEL detects the novelty and produces a description indicating which performed 
actions are highly unlikely. In this example, the AGENT MODEL reports that the unlikely action taken by the actor involves collecting 
the “diamond” resource, which is essential to task completion. As a result, the GOAL MANAGER generates subgoals to gather that 
resource with high priority, to ensure the agent can continue to solve the task.

A failure case for the AGENT MODEL in Polycraft is a variant of a novelty that gives the pogoist-type actor the ability to trade 
resources with our agent much like the no-novelty behavior of the “Trader”-type agents. One variant of the novelty involves the actor 
changing its policy and acting exactly like the no-novelty “Trader” actors. That change is quickly detected by the AGENT MODEL as 
a set of unlikely actions. Additionally, using the actor type classifier, the AGENT MODEL infers that the pogoist actor is acting like 
a trader. That novelty can be submitted to the 𝐾𝐵 and accommodation strategies can be applied. However, a different variant of 
this novelty involves the actor acting as expected most of the time, unless the agent interacts with it. In that case, it is available 
for trading as before. This novelty is not detectable without attempting to interact with the actor, and therefore, the AGENT MODEL

never detects this variant of the novelty.

5.2.3. Executor learner evaluations

To showcase the effectiveness of the EXECUTOR LEARNER component, we evaluate it on four novelty scenarios. The evaluations 
were performed using a similar experimental setup described in Section 5.3.1 with a pre and post-novelty scenario. We inject 
novelties into the environment and measure the task performance capability of the agents. Specifically, we compare the performance 
of the Base+EXECUTOR LEARNER with the Base agent, in which the Base agent consists of the symbolic inference components, and the 
Base+EXECUTOR LEARNER consists of the symbolic inference and the EXECUTOR LEARNER. The rationale is to showcase the usefulness 
of an rl-based learner to accommodate novelties, especially when extensive symbolic inference strategies (described in Section 4.3.1) 
fail to accommodate it. We further describe the experimental setup and evaluation criteria and discuss the results.

We design the novelty scenario for the internal evaluation in the Novelgridworlds environment as it gives us more flexibility to 
implement specific scenarios we want to analyze. These novelties are designed to showcase the benefits of using a reinforcement-
learning-based learner16 - in particular stochasticity, dynamic behavior, spatial and temporal relations. A description of all novelty 
scenarios used for this evaluation is available in the appendix.

Evaluation metrics. Both agent configurations (Base and Base+EXECUTOR LEARNER) were evaluated on the above four novelty 
categories. Each novelty tournament comprised 50 episodes. Each episode was limited to a maximum of 600 time steps or 15
minutes. We record the percentage of times each agent successfully achieved the goal, i.e., crafting a pogostick (The GA% metric 
described earlier in the text). Each novelty tournament was run for 10 independent trials, and the GA% was averaged across these 10
independent trials. It should be noted that the EXECUTOR LEARNER performed online exploration and learning during the evaluations 
and was randomly initialized for each run. For the scope of this work, we do not evaluate the robustness of the policy in this 
evaluation.17 We showcase the results in Table 4.

Discussion. The results of the component-wise analysis (Table 4) show that the Base+EXECUTOR LEARNER agent performs better 
overall than the Base agent in accommodating to novelties. Adding an EXECUTOR LEARNER component to the base architecture helps 
the agent to be more adaptive and learn policies that the symbolic explorer cannot find. The Base+EXECUTOR LEARNER is better at 
capturing complex dynamics where the Base agent alone completely fails in the novelty scenarios described above. We detail each 
novelty scenario to understand how the EXECUTOR LEARNER aids learning to accommodate the novelties.

16 The implemented novelties cannot be solved by another module in the architecture alone. We ensure that the EXECUTOR LEARNER is needed to accommodate 
these novelty scenarios. It is unknown whether any of these or similar novelties were included in the Systemic evaluation.
17 For thorough evaluation details and results on the robustness of policies learned with this algorithm please refer to our original publication of the algorithm used 
17

RAPid-Learn [16].
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Table 5

Overall results comparing the five configurations of the agents in the systemic evaluation.

Agent 𝐹𝑁𝐶𝐷𝑇 CDT% FP% NRP% GA%

Base 0.69 83.3 3.2 73.5 64.4
Base+AGENT MODEL 0.58 86.1 6.1 72.4 64.0
Base+EXECUTOR LEARNER 0.76 84.7 2.3 74.2 66.6

Base + AGENT MODEL + EXECUTOR LEARNER 0.39 88.7 1.6 68.1 61.9
VISION MODEL 3.44 56.6 34.1 – –

5.3. Systemic evaluation

Systemic evaluations were performed across the entire Polycraft novelty set to showcase the integrated capabilities of the agent. 
We evaluate three novelty-aware agent configurations in all 864 novelty tournaments18 and three pre-novelty tournaments. These 
evaluations utilize a novelty firewall, where novelties outside the shared set of novelty tournaments were concealed from the algo-
rithm and architecture team and evaluated by a separate evaluation team.

5.3.1. Evaluation methodology

The systemic evaluation focuses on the measurement of novelty detection and accommodation performance across all novelty 
categories using different configurations of the agent architecture. Three evaluations are presented on different configurations of the 
agent architecture.

Base agent. The first agent configuration we evaluated includes the first-order inference components and the novelty exploration 
component except the EXECUTOR LEARNER. This configuration aims to evaluate the agent’s performance using only symbolic reason-
ing, without any learning-based components.

Base agent+AGENT MODEL. The second configuration we evaluate augments the base agent with the AGENT MODEL, which aims to 
improve the agent’s novelty detection performance, especially in actor-related novelties.

Base agent+EXECUTOR LEARNER. The third configuration we evaluate augments the base agent with the EXECUTOR LEARNER, which 
aims to improve the agent’s ability to recover from execution failures unresolved by OPERATOR DISCOVERY. It should be noted that 
the EXECUTOR LEARNER in this agent is used only after all other exploration strategies fail to accommodate novelty within a preset 
time-limit.

Base agent + AGENT MODEL + EXECUTOR LEARNER We also evaluate the combined version of all the models with the base agent to 
demonstrate the capability of our architecture in terms of novelty detection and novelty accommodation.

Vision agent We include a vision-only agent to demonstrate the challenge of performing novelty detection through only visual 
perception. In this configuration, the default version of the Base agent is used, but no novelties discovered through symbolic inference 
are reported. However, since all accommodation strategies rely on detailed symbolic descriptions of novelty that the vision model 
cannot produce, we only evaluate the vision agent on novelty detection using the 𝐹𝑁𝐶𝐷𝑇 , CDT%, and FP% metrics.

Evaluation criteria. The evaluation of the integrated agent is performed using the tournament-wide metrics defined earlier. Specifi-
cally, we evaluate the novelty detection performance of the agent using CDT%, FP%, and 𝐹𝑁𝐶𝐷𝑇 , and the novelty accommodations 
performance using NRP% and GA%. Overall results are computed by averaging all tournaments. Additionally, per-category results 
are obtained by averaging tournaments within the same category. Due to the high computational cost of the systemic evaluations, 
we only run a single set of experiments per agent configuration.

5.3.2. Results & discussion

Table 5 quantifies the novelty handling performance of each of the five agent variants in the Polycraft environment. The base 
+AGENT MODEL and base +AGENT MODEL + EXECUTOR LEARNER agents outperform the other variants in 𝐹𝑁𝐶𝐷𝑇 and CDT%, 
which indicates increased novelty detection capability but with higher variation in performance, which is attributed to the AGENT 
MODEL being the only learning based novelty-detection component in those systems. The base+EXECUTOR LEARNER agent performs 
best in NRP% and GA%, which indicates the agent with an rl-based learner has better novelty accommodation capability. While the
VISION MODEL demonstrates potential to improve the novelty detection capabilities of the agent, its evaluations suggest that further 
effort is required to bring the false positive rate to a level that would not be detrimental to the agent’s performance in the pogostick 
task in Polycraft.
18

18 288 novelties with 3 tournaments each.
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Table 6

Detailed systemic evaluation of Base agent on all the novelty categories.

Metric 𝐹𝑁𝐶𝐷𝑇 CDT% FP% NRP% GA%

Objects 0.00 95.9 1.6 95.8 82.9
Attributes 0.51 86.7 3.5 63.2 58.5
Representations 0.18 85.0 2.8 74.8 66.7
Actors 0.00 92.3 7.7 63.3 52.6
Actions 3.76 61.1 0.0 103.0 94.4
Relations 0.00 96.3 3.7 70.7 48.4
Interactions 0.06 64.2 1.9 71.7 65.4
Environments 0.10 92.2 4.4 44.2 41.1
Goals 3.21 70.0 4.4 99.1 81.2
Events 1.12 77.3 2.3 51.0 48.8

Table 7

Detailed systemic evaluation of Base+AGENT MODEL agent on all the 
novelty categories.

Metric 𝐹𝑁𝐶𝐷𝑇 CDT% FP% NRP% GA%

Objects 0.00 88.9 8.7 91.5 82.3
Attributes 0.65 85.4 6.9 66.3 59.0
Representations 0.65 84.3 4.6 73.3 66.1
Actors 0 96.3 3.7 56.9 49.6
Actions 1.23 74.1 7.4 99.5 94.6
Relations 0.00 90.7 9.3 66.0 47.0
Interactions 0.24 68.5 3.7 68.2 62.6
Environments 0.48 95.5 4.5 42.7 40.9
Goals 0.13 95.6 4.4 104 82.7
Events 2.44 77.3 5.7 49.0 47.5

It should be noted the NRP metric may disadvantage reinforcement-learning agents as it punishes extended exploration in the 
environment.19 The EXECUTOR LEARNER achieves a measurable improvement over the other two configurations in NRP% despite 
this, indicating a positive influence on novelty accommodation. A detailed analysis of the evaluation (Table 8) reveals that the
EXECUTOR LEARNER improves the exploration capability of the agent in various novelty categories. Table 10 showcases examples 
of the accommodation strategies learned by EXECUTOR LEARNER in some novelty categories. We discuss these examples in detail in 
Section 5.3.3.

Table 6 details the systemic evaluation results of the base agent configuration by novelty category. The base agent performs 
strongly in novelty handling, though it is weaker than the other configurations.

Regarding novelty detection performance, the base agent seems to be weakest on the action, interaction, and goal novelties, 
receiving CDT% scores of 61.1, 64.2, and 70, respectively. Action and goal novelties also show high 𝐹𝑁𝐶𝐷𝑇 , which indicates that 
the base agent is not very consistent in detecting those novelties.

Table 7 details the systemic evaluation results of the Base+AGENT MODEL configuration by novelty category. The Base+AGENT 
MODEL performs best in CDT% and 𝐹𝑁𝐶𝐷𝑇 out of the three configurations but has the highest FP%. In the three pre-novelty trials 
ran, the agent model produced false positives in two out of three tournaments in a total of 3 out of 150 episodes. This per-episode 
false positive rate is consistent with our component-wise evaluation results and indicates that even a comparatively low false positive 
rate of about 2-3% can be magnified in tournament-wide evaluations. The additional false positives also explain the slight NRP% and 
GA% decrease, as they may force the agent to explore unnecessarily. It should be noted that the agent configurations that include
AGENT MODEL exhibit higher variation in detection performance, particularly in false positive rate, than the agent configurations that 
only use symbolic inference. This is due to small random effects in the environment (e.g. where broken objects fall to the ground) 
that may trigger false positive detections from the neural models. Still, both configurations of the agent with AGENT MODEL overall 
outperform the other agents in novelty detection.

The Base+AGENT MODEL configuration performs especially well in novelty detection of action and goal novelties, increasing 
CDT% by 13% and 25.6%, respectively. It also significantly decreases 𝐹𝑁𝐶𝐷𝑇 , decreasing the average time-to-detection to 0-2 
episodes for both categories. A smaller improvement is also seen in CDT% for the interactions and environments novelty categories. 
This indicates that the AGENT MODEL is able to supplement the base agent’s novelty detection capability in actor-related novelties in 
which modeling of actor behavior is required.

A surprising result is that the combined base+AGENT MODEL +EXECUTOR LEARNER agent performs worse than the other agents 
in the novelty accommodation metrics NRP% and GA%. Table 9 indicates that this is consistent across novelty categories and not 
concentrated on one. We attribute this to unforeseen interactions between the additional components in that configuration: When 

19 Extended exploration accumulates negative scores because the agent executes many actions in the environment. Therefore, reinforcement learners, which tend to 
19

require prolonged exploration to learn policies, are disadvantaged by this metric as possible gains in task completion performance can be masked.
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Table 8

Detailed systemic evaluation of Base+EXECUTOR LEARNER agent on all 
the novelty categories.

Metric 𝐹𝑁𝐶𝐷𝑇 CDT% FP% NRP% GA%

Objects 0.00 95.2 2.4 92.5 82.0
Attributes 0.48 88.1 2.8 62.9 61.2
Representations 0.64 86.0 3.7 75.9 68.6
Actors 0.00 98.1 1.9 64.4 54.5
Actions 4.86 64.8 1.9 101.8 96.5
Relations 0.00 98.1 1.9 70.2 49.3
Interactions 0.06 64.8 1.9 71.3 64.6
Environments 0.09 94.4 2.2 42.2 40.5
Goals 2.82 67.8 1.1 106.5 86.5
Events 1.23 80.7 2.3 55.8 56.7

Table 9

Detailed systemic evaluation of Base + AGENT MODEL + EXECUTOR 
LEARNER agent on all the novelty categories.

Metric 𝐹𝑁𝐶𝐷𝑇 CDT% FP% NRP% GA%

Objects 0.00 95.2 1.6 92.5 80.1
Attributes 0.95 91 1.4 63.0 57.6
Representations 0.13 85.2 0.9 74.7 66.7
Actors 0 98.1 1.9 53.5 47.8
Actions 1.93 77.8 0.0 91.6 86.8
Relations 0.00 96.3 3.7 46.8 39.8
Interactions 0.06 66.0 1.9 72.9 64.7
Environments 0.10 93.3 3.3 32.2 39.9
Goals 0.21 98.9 1.1 101.2 82.1
Events 0.78 77.5 0.0 40.6 41.5

Table 10

Description of some novelties in which the Base+EXECUTOR LEARNER agent performs better than the base agent on the systemic evaluation conducted on Polycraft.

Category Description Adaptation

Attribute Chest objects contain valuable task items accessible with 
break or collect.

EXECUTOR LEARNER learns to break and collect from multiple chests 
on the ground to get the necessary items.

Attribute Birch tree types fail to produce rubber. EXECUTOR LEARNER learns to remove objects that result in operator 
failure.

Action Traders plant new trees around themselves. EXECUTOR LEARNER learns to handle actions from Actors that 
previously didn’t perform certain actions.

Concealed Concealed EXECUTOR LEARNER performed better on some concealed novelties.

the EXECUTOR LEARNER explores the environment, this may induce changes to the environment that in turn may cause changes in 
the behavior of other agents. As a result, the AGENT MODEL may detect novelty, which in turn may lead the agent to further explore 
the detected novelties, hurting its task performance.

5.3.3. Examples

Several cases are identified from the systemic evaluations conducted on the Polycraft environment to demonstrate the architec-
ture’s strengths and weaknesses in novelty handling. Below is a detailed walk-through of how the architecture reacted to each novelty 
scenario. Additional examples are available in the appendix.

Must break tree tap to get rubber. Within this novelty scenario, the operator to collect rubber from a tree tap does not work. The agent 
must now break the tree tap to obtain rubber. This novelty belongs to the Attribute category. The base agent sometimes succeeds at 
solving this novelty and sometimes fails. These two cases are outlined below.

Explanation. The agent attempts to collect rubber from a tree tap, but the operator fails with total effect failure, prompting 
the NOVELTY EXPLORATION component to enter a failed operator effects recovery policy. The failed operator is represented in 
the agent’s knowledge base as the operator collect(tree tap,tree) where (tree) is the tree that the tree tap is placed onto. Our current 
implementation of the failed operator effects policy only utilizes the Operator Variation strategy on operators with a single parameter, 
which means that the strategy is not executed in this case. As discussed in the appendix, this is due to the large search space resulting 
from considering operators with multiple parameters. As a result, the operator variation break(tree tap, tree) is never attempted, and 
ultimately the agent is unable to solve the task via any other strategies, opting to give up.

The agent is successful in the rare occasion in which the rival pogoist actor breaks the tree holding the tree tap after the agent 
20

has placed the tree tap on the tree, but before the agent has executed the “collect” operator. When the GOAL MANAGER attempts to 
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execute the “collect” operator, a precondition fails: nextTo(tree tap, tree), which represents the spatial relation of the tree tap to the 
tree. This condition fails because the tree has been chopped down. As a result, the agent utilizes the precondition failure strategy, in 
which the agent updates its knowledge base with the accurate state and replans. In the plan generated by the agent, it first breaks 
the tree tap to obtain the tree tap item and takes it to another tree. Upon breaking the tree tap, it enters the effects failure recovery 
policy when that action unexpectedly places rubber in the agent’s inventory. The agent updates its representation of the operator to 
include acquiring rubber as an effect. Thus, the agent succeeds in accommodating the novelty due to the actions of the rival pogoist.20

Pogoist prioritizes diamond. The rival pogoist actor changes strategy to prioritize mining diamond ore, which means the agent will be 
unable to mine any if it does not also prioritize diamond. This is categorized as a Goals novelty.

Explanation. Without the agent model added to the base architecture, our agent is able to solve this novelty relatively well 
because the Task Planner prioritizes mining diamond ore. This is coincidental and not due to any intentional value placed on mining 
diamond ore over any other action in the plan, so our base agent’s success in this novelty is an interesting example of successful 
performance without explicit accommodation. Moreover, the symbolic inference does not even detect this as a novelty.

However, with the AGENT MODEL added on to the base architecture, our agent can successfully detect and intentionally accom-
modate the novelty. Each type of actor in the world (including pogoist) is linked to a model of behavior that is trained on non-novel 
trials, as described in Section A.1. The pogoist breaking diamond ore so early in the episode is differentiated from the model of ex-
pected behavior, and therefore, the AGENT MODEL reports it as an unlikely action from the pogoist. The agent considers the ‘unlikely’ 
action to be a novelty and records this in its knowledge base. At the beginning of the next episode, the agent spends a little time 
investigating any recorded novelty descriptions in Knowledge Discovery, including this action, which it does by copying the action 
and mining the diamond. Thus novelty is detected, and the agent performs well by obtaining the ore early.21

Cannot collect rubber from Birch trees. A new species of birch tree, belonging to a new subtype of the tree object, is introduced to the 
environment alongside the known oak trees. Rubber cannot be collected from the birch trees, only the oak trees. This is categorized 
as an Attribute novelty.

Explanation. The base agent performs fairly inconsistently in this novelty, entirely dependent on whether the planner decides 
to collect the rubber from an oak or a birch on any given trial, since the inability to collect rubber from birch trees is unknown 
to the agent. When it tries to collect from a birch tree and fails, the agent attempts to repair the operator using the total effects 
failure policy. The failed operator is collectFrom(tree tap,birch tree), and the operator that would provide success is collectFrom(tree 
tap,oak tree). But as mentioned earlier, our current implementation of the Total Effects Failure policy only utilizes the operator 
variation strategy on operators with a single parameter to avoid search space explosion, leading the agent to give up after trying 
other unsuccessful policies.

However, the agent utilizing the EXECUTOR LEARNER manages to overcome this implementation compromise in our architecture. 
Rather than giving up, when the agent utilizes the EXECUTOR LEARNER, to learn a surprising new policy to accommodate this 
novelty. It prevents the failure from happening again by breaking all the birch trees in the environment and replanning. This forces 
the symbolic task planner to collect rubber from oak trees for the rest of the trial because it doesn’t have the option to collect it from 
anywhere else. This unexpected accommodation strategy showcases the flexibility of the EXECUTOR LEARNER in integrating with 
the implementation of the TASK PLANNER. The learner’s reward function encourages reaching states from which the agent can plan, 
which may yield different recovery policies based on the characteristics of a particular implementation of the architecture.

6. Related works

Open-world novelty detection and accommodation is an emerging direction in AI. Some researchers have already attempted 
to address unprecedented experiences in the world, a process that often begins with the detection of novelty. One way to detect 
anomalies is to use statistical techniques to detect visual novelties or anomalies in time-series data [37]. In particular, convolutional 
neural networks (CNNs) trained as classifiers on normal classes can have their probabilistic outputs repurposed to compute a novelty 
score for new images [35,30,32]. For example, a method named NDCC [8] first trains a classifier, then computes a novelty score 
for a new image by computing the distance between that image and the closest normal class’s centroid in the learned feature space. 
Other variants of neural network techniques for visual novelty detection include autoencoder-based approaches [1,27], Generative 
Adversarial Networks (GANs, 18), and adversarial autoencoders based on GANs [49]. However, these techniques alone only allow 
the detection of anomalies.

To make better inferences about new visual events, some researchers have proposed cognitive architectures. These architectures 
are able to identify and locate unknown activities in video data in an open world, such as OW-TAL [61]. Others are also able to 
analyze and generate explanations and theories, as well as revise and update beliefs [56]. Alternatively, attempts are made not 
only to recognize new experiences but also to acquire additional knowledge about them. The CoTTA cognitive architecture [55]
explores relationships between topics and structural elements to capture similarities and provide a better semantic representation for 
retrieval. Li et al. [33] present a cognitive architecture to understand visual scenes from a very sparse “tabula rasa” knowledge of 
the world, and learn to automatically extract relevant information from the world using only unsupervised and RL techniques. These 

20 A narrated video of our agent encountering this novelty can be viewed at the following link: https://www .youtube .com /watch ?v =ILgFudhi6i8.
21

21 A narrated video of our agent encountering this novelty can be viewed at the following link: https://www .youtube .com /watch ?v =EZOgBy9cDc4.

https://www.youtube.com/watch?v=ILgFudhi6i8
https://www.youtube.com/watch?v=EZOgBy9cDc4
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cognitive architectures are able to extract new visual representations from the world, but they do not give the agent any capabilities 
to understand how to plan and act when it encounters changes in the world.

Various aspects of planning and acting in non-stationary environments have been studied before (e.g. planning in the open world, 
see 54), sometimes under the umbrella term “lifelong learning” and often using variants of deep reinforcement learning [26]. However, 
re-planning approaches can not recover from obstructive novelties. Proposed solutions for continuous [2,31] and non-stationary [9]
learning are often plagued by catastrophic forgetting and difficulties in dealing with abrupt changes in the task environment, which 
can completely block the learner’s ability to adapt and lead to permanent task failure.

Some work in the field of continual learning has shown performance stability despite repeated exposure to novelties [28]. In 
reality, however, continual learning is neither designed to recognize novelties nor to adapt to a growing domain and would fail in the 
open world. Lifelong learning methods with adaptive capabilities such as Meta Experience Replay [46] or powerplay [50], require task 
traces from previous experiences for retraining to prevent forgetting. This is often unrealistic (e.g., with the limited computational 
and memory capacity available to autonomous embodied systems such as robots) and sometimes not feasible (because of the time it 
takes to relearn the system).

Some classical approaches to open-world inference are also relevant to novelty-capable agents. Methods based on Adaptive 
Resonance Theory [60,51], non-monotonic logic [40,12] and growing neural gas networks [38,39] may form learning and reasoning 
components of larger novelty-capable agents.

Several recent hybrid planning and learning approaches have shown how to take advantage of high-level planning representations 
and reasoning methods while utilizing low-level policy-based learning approaches like RL [52,25,29,24]. Guan et al. [20] learn a 
metacontroller over the learned skills by using the provided operators to acquire skills to access a variety of terminal states (also 
called landmark states). However, these approaches do not consider open-world settings. Recent work on dynamic environment 
accommodation is typically limited in several ways. Agents may receive dense rewards [5], or have extra symbolic knowledge about 
a change when it appears [7,15,23].

Other efforts assume agents may face gradual changes [42,44] or plan-level novelties only [58]. On the other hand, Sarathy 
et al. [48] used RL to accommodate changes caused by the introduction of novelties. By adapting existing and/or learned executors 
for plan operators, they enabled the agent to find a successful path to the goal after novelty injection [16,36].

Some cognitive architectures explore learning to deal with changes in the world. FANS-RL [14] improves reinforcement learning 
efficiency and stability in dynamic environments. However, FANS-RL is designed to respond to changes in environment dynamics 
such as motor malfunctions or changing goals in the form changing reward functions, rather than sudden and novel changes (such as 
prohibitive novelties) that may include new objects, properties, and relations. Muhammad et al. [41] propose an architecture capable 
of handling abrupt novelties where detection, symbolic characterization, and reasoning are required. Nevertheless, their work may 
encounter impasses when the available understanding of the environment is insufficient for adapting to changes (such as obstructive 
novelties). The architecture we propose detects changes in the world either through new visual information or through comparing 
expected models of the world and adapts accordingly to keep performing despite these changes being novel, abrupt, uninformed, and 
of diverse forms. Our architecture includes a complete strategy for exploring the environment when a change is detected, abstracting 
information about it, and learning to adapt to it.

Recent advancements in the development of fault-tolerant systems have significantly contributed to domains such as network 
systems [34], sensor networks [59,57], unmanned aerial vehicles (UAVs) [22], and spacecraft [10]. These methods, however, are 
largely domain-specific, which highlights the need for more versatile architectures. Our approach introduces a suite of methods and 
algorithms designed with a focus on universality, enabling their adaptation for open-world novelty handling in diverse systems.

7. Limitations and future work

The comprehensive multi-stage evaluations demonstrated that the proposed components and their embedding in a fully functional 
cognitive agent architecture are able to detect and accommodate a large variety novelties even without prior foreknowledge of what 
novelties to expect. Of course, this is only a start and the proposed methods and components can and must be extended to cover a 
broader set of novelties in more open-world environments. We will briefly address some of the limitations and directions for future 
work.

Subsymbolic modalities and the extraction of symbolic information. While the proposed architecture included visual novelty detection 
methods based on images, we did not use visual processing for localizing novelties or generating environmental state descriptions. 
Visual processing could also be used to model the actions of other agents over time. A more faithful evaluation, closer to the real 
world, could require agents to use only perception-based processing and ignore any pre-processed symbolic descriptions. Moreover, 
since other modalities like sound might be important for real-world tasks, our present architecture would have to be augmented 
to handle those perceptual components, utilizing similar techniques to those employed for visual novelty detection (e.g., to extract 
symbolic descriptions from audio such as new words or speech elements). Finally, given the relatively high false positive rates 
observed in our visual detector evaluations, developing improved methods that better control false positive rates could make real-
world applications possible.

Novelty handling limitations. The agent architecture cannot handle conceptual novelties and novel ontological categories. In addition, 
there are some novelties that our agent cannot detect due to implementation limitations, even though they could, in principle, be 
22

detected and handled by our architecture. Such novelties include higher-order novelties (i.e., novelties in properties of properties 



Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

or properties of relations, etc.) as well as elements of the world that the agent cannot sense (i.e., sound). Finally, in non-episodic 
environments with irreversible actions, the executor learner may, during exploration, eliminate every possible solution path.

Other types of environments. While the environments we used for evaluations can get fairly complex, the employed tasks were 
reasonably simple and did not involve drastic changes to the environment. Moreover, discrete abstractions in terms of space and 
time were also simplifications that allowed us to focus on the core problems of novelty handling. Ultimately real-world agents will 
have to deal with the continuity of real-time and real-space tasks. However, note that our theoretical framework is not limited to 
discrete states and thus still applies to a wide range of real-world problems that can be addressed by a system that at the core operates 
on discrete symbolic representations that abstract over continuous dimensions. To cope with continuous states, we can use various 
components to discretize space and time. For simple cases, we can directly discretize continuous variables produced by the Domain 
Interface. For complex cases, the Domain Interface can pass in continuous information and have it discretized by a learning model 
subcomponent within the Neural Inference module.

Evaluation of agent performance. There is an intrinsic tension in our system evaluations between the implicit goal to find novelties 
and the explicit goal to perform the pogostick task. Some of the failures to find novelties are thus due to the agent’s pursuit of its 
explicit goal, which always takes precedence over finding novelties. Generally, the agent will only explore novelties that directly 
affect it while solving the task; its investigation of novel entities in the environment as discussed at in Section 4.3 is limited to in 
order to allow the agent to abandon novelty exploration in favor of its explicit goal of task-solving. This raises the question of how 
novelty detection should be evaluated in general: should it be part of another task (as in our case), or should there be a separate goal 
in which the agent might be rewarded specifically for novelty detection? In the latter case, the agent could then explicitly trade off 
the novelty detection task with the primary task. Of course, novelty detection and characterization could be also made the only task, 
but this approach seems quickly infeasible and pointless in environments with too many objects to investigate.

Interpretability There is an important final point to be highlighted about evaluations of novelty detection and accommodation: it is 
one thing to measure the extent to which an agent can handle prohibitive novelties or obstructive, because the agent cannot accomplish 
the task without “getting around” them, but whether the agent detected them (if it does not explicitly indicate detection), or whether 
it incorporated the novelty into its knowledge base in a way that matches our expectations, is another question. The latter case 
requires the agent to use our ontology and conceptual system, or at least one that we understand, but there is no guarantee that the 
way the agent recorded the novelty in its own internal representations will match with such a system. While symbolic representations 
are at least introspectible and new symbols can be traced back to how they originated in the agent, the subsymbolic components 
might not be amenable to those kinds of human introspection. It is possible that “explainability mechanisms” (developed for neural 
networks) might be able to address this problem, at least to some extent, but likely additional mechanisms and representations will 
be needed to understand what the agent has learned and how it characterized its new knowledge.

8. Conclusion

The aim of this paper was to present a novel cognitive architecture framework for handling novelties in open worlds. The proposed 
framework for embodied agents (with sensors and effectors) consists of both symbolic and subsymbolic components that together 
synergistically uses logical and statistical inferences for detecting novelties as well as offline and online machine-learning techniques 
for accommodating novelties. Extensive multi-stage evaluations of an architecture instance of the framework performing a crafting 
task in a Minecraft-inspired simulation environment demonstrated that the proposed methods can usually detect, to some extent 
characterize, and often accommodate several types of novelties, such as novel objects or novel agents.

These encouraging results point the way for future developments. Possible improvements could include the addition of other 
subsymbolic input modalities like sound or tactile sensors, extended symbolic inference and novelty exploration mechanisms that 
use planners to plan experiments for discovery instead of fixed strategies, and yet better ways for quickly experimenting with 
objects and actions in the environment to discover solutions to unforeseen and unexpected problems. The overall lesson is that more 
emphasis needs to be placed on problem-solving and solution discovery during task performance compared to pre-training and initial 
knowledge engineering. Only when we have solved the problem of how to effectively determine what to try in the interest of finding 
novelties that enable solutions to the task at hand will our artificial agents have made the full transition from closed to open worlds.
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Appendix A

A.1. Agent implementation

The proposed novelty detection and accommodation capabilities and were evaluated in two different environments, described 
here. For all evaluations, we created a Polycraft Interface Component (however, it works identically with novelgridworlds). Upon 
any Sense action taken by the agent, this component parses Polycraft’s sensory information from a JSON format into the first-order 
logic predicate form used by the rest of the architecture.

The KBis implemented as a set of facts and rules in Prolog. Prolog is queried every time the truth value of a fact is needed, such 
as when the preconditions and postconditions of an action are being checked. The set of Prolog facts is translated to PDDL to be 
inserted into a problem file. Actions are written in our Action Script Language, ASL, which is also translated into PDDL as a planning 
domain. Our Symbolic Planner can be configured to use any PDDL planner, and for this work we’re using an off-the-shelf planner, 
the fast-forward planning system Metric-FF. During planning, the PDDL domain and problem files are dynamically generated by 
scraping information from KBI and the action database. The action database contains the set of all actions that can be executed by 
the agent, and is stored in the GOAL MANAGER component. When populating the PDDL domain, we filter for actions that have at 
least one known effect, so they can be utilized by the planner.

Time spent exploring. The amount of time that the agent may wish to spend on any one exploration strategy mentioned in Section 4.3
is domain-specific. In our implementation with Polycraft, because our agent is being evaluated on whether it can achieve success 
before a time-out, certain phases of exploration are restricted to a set time limit, such as the Knowledge Discovery phase. This 
phase occurs before the agent even generates a plan to achieve the main task goal, so it is important that the agent does not waste 
time exploring a novelty such that it does not have enough time left over to actually solve the task. The search space of Operator 
Discovery strategies (other than reinforcement learning, which we allow to keep exploring until Polycraft times out due to it being 
the final strategy employed when all other strategies have failed) is intentionally cut down in order to limit exploration time as 
well. Precondition Discovery, for example, only focuses on adding variations of the holding(self,X) predicate, for all X where X is a 
novel object in the environment, as this predicate represents a prominent state aspect in Polycraft. While this has the advantage of 
24

ensuring the agent does not spend too much time on any one exploration strategy, it also creates large blind spots for the agent’s 
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Fig. 7. Architecture diagram of the neural network underlying the agent model. The map of the environment is summarized into a vector and concatenated with state 
and action-history information. The network outputs probabilities for each action. ⊕ represents concatenation.

novelty solving abilities (again, reinforcement learning is utilized as a last resort to fill some of these gaps in the base agent’s abilities, 
the success of which is discussed in Section 5.3.2).

Operator failure strategy selection. Choosing which strategies to follow in the Total Effect Failure policy, and how those strategies 
were executed, was implemented based on the specific operator that failed. For example, Strategy 1 (update operator and replan) is 
not attempted when a movement operator fails, as movement is an extremely essential part of task-solving in Polycraft and deleting 
its expected effects could entirely destroy the agent’s ability to move anywhere. Instead, we consider the more likely explanation 
that the agent’s knowledge base is inaccurate and the agent believes its path is clear when it is not, which is an error addressed by 
Strategy 2 (repeat the action). Similarly, Strategies 3 and 4 are excluded for failed operators that have more than one parameter (and 
thus a larger state space to explore) out of a reluctance to spend excessive time symbolically exploring a novelty instead of simply 
trying to find an alternative plan that avoids the novelty. These heuristics are not necessarily applicable to all other tasks or domains, 
but we find they are effective in Polycraft.

The initial ontology provided to the agent is accessible on this link: https://tufts .box .com /s /pab7xze409uhe5n9461m7x8dz0dn
9xg9.

A.1.1. AGENT MODEL implementation details

State representation. From the Polycraft symbolic state descriptions obtained through DOMAIN INTERFACE, a set of inputs 𝑠′
𝑐
= (𝐱𝑐 , 𝑀)

are derived for the neural networks of the AGENT MODEL for each actor 𝜄 in the state description. The vector 𝐱𝜄 ∈ℝ𝑑 is a vectorized 
representation of the actor’s internal states such as its inventory, inferred by tracking its actions throughout a trajectory. The matrix 
𝑀 ∈ {0, 1}40×40×𝑑2 is a representation of the map of the environment, as a 40x40 square is sufficient to hold every configuration 
of the pre-novelty polycraft map. The third dimension of 𝑀 with size 𝑑2 ∈ ℕ stores a binary indicator indicating which known 
environment entity is present in each position.

As mentioned in the text, unlikely actions are detected using a threshold calculated over a validation set of state-action pairs from 
pre-novelty environments.

Model architecture. Each neural network in the implementation of AGENT MODEL for the Polycraft domain is composed of 3 convolu-
tional layers with filter size (3,3) and stride 1, and 4 multilayer perceptrons with 1 hidden layer. All layers have a hidden dimension 
of 64. All layers except the output layer use ReLU activations. The architecture is illustrated in Fig. 7 and summarized as follows:

𝐻𝑀 = 𝐶𝑁𝑁𝑀 (𝑚𝑙𝑝𝑀 (𝑀))

𝐡𝑀 = 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝐻𝑀 )

𝐡𝑥 =𝑚𝑙𝑝𝑥(𝐱)

𝐲̂ =𝑚𝑙𝑝([𝐡𝑀,𝐡𝑥]).

The output vector 𝐲̂ represents logits that compute probabilities for each action using a softmax layer.

Additional training details. The agent model neural networks are trained for a total of 100 epochs with early stopping based on the 
validation loss, with a patience value of 5. They are trained using the Adam optimizer with a learning rate of 0.001. Class weights 
are utilized during training to ensure the model does not overfit the most common actions taken by other actors (such as navigation 
commands). Weights are computed based on the frequency of classes (actions) in the dataset so that all classes (actions) are weighed 
equally.

A.1.2. VISION MODEL implementation details

Image preprocessing. Before splitting into patches, input images are cropped to remove the “Minecraft item bar” by removing the 
bottom 22 pixel rows of the images. For training, patches of size 32 × 32 pixels are sampled randomly from the cropped images and 
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normalized between 0 and 1. Additionally, we add Gaussian noise with a standard deviation of 1
40 is added to the input data.

https://tufts.box.com/s/pab7xze409uhe5n9461m7x8dz0dn9xg9
https://tufts.box.com/s/pab7xze409uhe5n9461m7x8dz0dn9xg9
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Table 11

Hyperparameters of EXECUTOR LEARNER for reinforcement learning.

Hyperparameter Value

𝜖max 0.3
𝜖min 0.05
𝜌max 0.35
𝜌min 0.05
𝜆 decay − log(0.01)

50
decay rate 0.99
network weight update rate 1
positive reinforcement 1000
negative reinforcement -100
step cost -1
number of episodes checked for convergence 100
successful runs required to decide convergence 20

Training settings. Hyperparameter tuning of the latent representation dimension takes place over the values 50, 100, and 200 and 
batch sizes 32, 64, and 128. The selected value for the representation dimension is 100 and the batch size is set to 128. Training 
takes place over 8000 with a learning rate of 0.001 with the Adam optimizer and default Pytorch values for other parameters (0 
weight decay and (𝛽1, 𝛽2) = (0.9, 0.999)). Additional details on the architecture and training settings are available in [13].

A.2. EXECUTOR LEARNER implementation details

The EXECUTOR LEARNER uses one neural network for each operator. Each neural network has 1 hidden layer with 128 neurons. 
Table 11 summarizes all hyperparameters for the RAPid-learn [16] algorithm.

A.3. Non-novelty aware agent

The non-novelty aware agent is a simple PDDL-based planning agent. The domain and problem files as well as the code used to 
integrate it with the Polycraft domain are available here: https://tufts .box .com /s /qeypcyn6xyq60vvm6l0adqu647ltttgw.

A.4. Simulation setup and hardware details

All systemic evaluations are run on the LoneStar6 HPC in Texas Advanced Computing Center. Simulation details for the Polycraft 
domain are available in [19]. Training for neural models took place on a server with 4 NVIDIA RTX 2080Ti GPUs, and an Intel(R) 
Core(TM) i9-9940X processor with 130 GB of memory

A.5. Executor learner novelty handling discussion

In this section, we provide a detailed discussion of some novelty scenarios in the internal evaluation of the EXECUTOR LEARNER

agent.
In the This is just random novelty, we showcase that the agent with an EXECUTOR LEARNER can learn to adapt to stochasticity in 

the environment. Table 4 shows that the EXECUTOR LEARNER learner configuration successfully solves the task in 20% of the cases, 
whereas the symbolic explorer solves it in a mere 2%.

In Convince me novelty, we observe that the EXECUTOR LEARNER aids the agent in learning to accommodate a beneficial novelty. 
Table 4 shows that in this novelty, the base agent’s symbolic explorer fails to solve the task, while the EXECUTOR LEARNER helps 
solve the task almost 60% of the time.

In the Sapling can’t grow here! novelty, we observe that the EXECUTOR LEARNER helps accommodate about 10% of the time. The 
goal of this novelty was to showcase the learning of spatial aspects of the learner. However, we could not observe the expected 
performance due to implementation limitations. The EXECUTOR LEARNER has access to the same higher-level operators as the base 
agent. However, to learn the spatial aspects of this novelty, the agent should have access to the lower-level navigation actions to 
learn a successful policy to solve the task.

In the show me your card first novelty, we demonstrate that the RL agent can learn a sequence of operators to accommodate 
the novelties. The search space of sequences of operators is intractable for the other exploration strategies, as they would have to 
explicitly enumerate all combinations of operators of different lengths. Instead, the RL-based learner has a more flexible knowledge 
representation in the form of neural network parameters, which allows it to generalize the knowledge it gains to unexplored states. 
That, combined with its knowledge-guided exploration strategy, makes it more efficient in searching over the sequences of operators. 
From the results in Table 4, the agent configuration that uses the EXECUTOR LEARNER successfully solves the task 20% of the time, 
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while the symbolic explorer can never accommodate it.

https://tufts.box.com/s/qeypcyn6xyq60vvm6l0adqu647ltttgw
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Table 12

Results comparing configurations of the agents in the systemic evaluation of known novelties.

Agent 𝐹𝑁𝐶𝐷𝑇 CDT% FP% NRP% GA%

Base 0.41 83.8 3.0 76.4 67.7
Base+AGENT MODEL 0.43 84.6 6.70 75.4 67.0
Base+EXECUTOR LEARNER 0.57 85.9 2.5 76.5 69.0
Base + AGENT MODEL + EXECUTOR LEARNER 0.42 88.1 1.7 72.6 65.0

Table 13

Results comparing configurations of the agents in the systemic evaluation of unknown novelties.

Agent 𝐹𝑁𝐶𝐷𝑇 CDT% FP% NRP% GA%

Base 1.34 79.9 3.7 64.8 57.1
Base+AGENT MODEL 0.91 89.5 4.9 65.5 57.2
Base+EXECUTOR LEARNER 1.23 81.00 1.9 68.2 61.3
Base + AGENT MODEL + EXECUTOR LEARNER 0.33 89.6 1.5 58.1 54.7

A.6. Additional evaluation data

In this section, we include additional results from our systemic evaluations.
Tables 12 and 13 break down the performance of the 4 accommodation-capable agent configurations between known and un-

known novelties. It is important to note that the agent configurations including the AGENT MODEL component perform better on the 
unknown set. This is because the novelties related to other agents were not balanced across the two sets, making the unknown set 
contain proportionally more such novelties. The agent model was able to detect those novelties often and as such the performance 
on that set is higher.

The dataset imbalance originates in the development cycle of the agent. The agent was developed in three phases, with each 
phase focusing on different categories of novelties. In each phase, a small number of novelties from each category were known, and 
the rest were unknown. At the end of each phase, the unknown novelties for that phase were revealed. In the paper, we present the 
final version of the system, in which unknown novelties from the first two phases are revealed and the third are hidden. Therefore, 
the set of unknown novelties consists of novelties from phase 3 categories, which are Environments, Goals and Events.

A.7. Additional examples

New item needed to craft pogostick. This novelty scenario belongs to the object category. In this scenario, a new unknown item (gold) 
is required in the crafting recipe to craft a pogostick. The agent must now learn to associate the recipe ingredient “gold” with a 
previously unknown resource block that now exists in the world. It must mine that block to acquire the gold and then use it to craft 
a pogostick.

Explanation. Before executing the pogostick goal, the agent detects the presence of the gold in the environment as a novelty 
through the GOAL MANAGER’s initial comparison of the agent’s knowledge base to the current state of the world. Before the GOAL 
MANAGER attempts to achieve the pogostick goal, the NOVELTY EXPLORATION component enters Knowledge Discovery and generates 
subgoals that involve the novel object. The GOAL MANAGER executes these subgoals. One of these subgoals, break(gold), results in 
the effect of gold being deposited into the agent’s inventory, which the GOAL MANAGER observes through the DOMAIN INTERFACE. 
The Exploration component creates a new operator for break(gold) that reflects this effect and stores it in the agent’s knowledge 
repository. The agent can then plan to accomplish the requirements of the novel crafting recipe (having gold in its inventory) by 
mining more gold and successfully completing the task. A narrated video of our agent encountering this novelty can be viewed at 
the following link: https://www .youtube .com /watch ?v =7X6EUkYcHSc.

New supplier actor. A previously unknown actor (the supplier) appears in the world (note that this is similar to the example illustrated 
in Section 2). The supplier offers a pogostick if the agent performs the interact action on it. In this variant, the pogostick can no longer 
be crafted, leaving the supplier as the only means of acquiring it. This scenario is categorized as an Agent novelty and constitutes a 
beneficial novelty for our agent, as acquiring a pogostick can be achieved with a shorter plan than usual.

Explanation. Before executing the pogostick goal, the agent detects the presence of the supplier in the environment in the GOAL 
MANAGER’s initial comparison of the agent’s knowledge base to the actual state of the world. Before the GOAL MANAGER attempts to 
achieve the pogostick goal, the NOVELTY EXPLORATION component enters Knowledge Discovery and generates subgoals that involve 
the novel entity, including interacting with the supplier. When this happens, and the supplier deposits the pogostick into the agent’s 
inventory, this is observed through the DOMAIN INTERFACE, the GOAL MANAGER notes the discrepancy between the expected effect 
and the observed effect, and prompts the Exploration component to enter failed effect recovery. The Exploration component creates 
a new operator for interactWith(supplier) that reflects this effect and stores the new operator in the agent’s knowledge repository. 
In subsequent games, the agent can plan to obtain the pogostick immediately, using the knowledge of this beneficial novelty. A 
narrated video of our agent encountering this novelty can be viewed at the following link: https://www .youtube .com /watch ?v =
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06B6pHMakFs.

https://www.youtube.com/watch?v=7X6EUkYcHSc
https://www.youtube.com/watch?v=06B6pHMakFs
https://www.youtube.com/watch?v=06B6pHMakFs
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Traders spawn in side rooms. The traders do not appear in the main room that the agent starts in as in pre-novelty. They appear in a 
side room, which means their existence is not initially known to the agent. This is categorized as a Relations novelty.

Explanation. The agent needs to interact with the traders to get the available trades and later use the trades to solve the task. 
Without the knowledge of the trades, the agent cannot solve the task. Therefore, upon discovering the absence of traders in the main 
room, the agent cannot find a successful plan and encounters this novelty as prohibitive novelty.

The NOVELTY EXPLORATION component executes the recovery policy for prohibitive novelties, which executes operators to explore 
the unobserved parts of the environment. One of these operators is exploreRooms(), in which the agent enters all the side rooms 
and observes what is inside them, including the trader actors. Upon knowing their location, the agent interacts with the traders to 
receive information about their trade offers, generating new trade operators to represent them. From here, the agent resumes normal 
operation after replanning with the new operators and successfully solves the task.

A narrated video of our agent encountering this novelty can be viewed here https://www .youtube .com /watch ?v =gwxdPXZiYsE.

Different items in chests. In this novelty scenario, the ingredients to craft the pogostick are scattered throughout the environment 
inside various identical chests, and these ingredients are not obtainable otherwise. This is categorized as Object novelty.

Explanation. The base agent often fails to solve this problem because it does not distinguish between chests and assumes that 
opening each chest yields the same contents. Initially, this novelty prohibits the agent from being able to plan to craft a pogostick, 
which prompts the Planning Failure recovery policy. During this policy, the agent will open a chest as an exploratory action to 
discover what lies inside it. When opening a chest and finding unexpected contents, such as rubber, the agent enters the Partial 
Effects Failure recovery policy and creates a new operator to reflect that opening a chest yields rubber. From this point, however, the 
agent still fails to plan because it needs more of the ingredients hidden in the chests but assumes that all chests only contain rubber. 
It eventually will give up after failing to accommodate the novelty.

However, the base+EXECUTOR LEARNER agent is successful at accommodating this novelty. Instead of giving up, the agent 
begins exploring using reinforcement learning. The Executor Learner places a higher priority on executing novel operators during 
reinforcement learning exploration, and because the agent has already created a novel operator due to the Partial Effects Failure 
policy, this operator is attempted often. This eventually results in the agent collecting ingredients from all the chests and being 
able to replan to solve the task. This is an interesting example of the EXECUTOR LEARNER overcoming unforeseen limitations of the 
symbolic reasoner implementation: The agent assumes all chests in the environment are interchangeable, which leads to this failure. 
However, the EXECUTOR LEARNER has much more flexibility in its knowledge representations and is, therefore, able to discover an 
executor that accommodates the novelty.
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