
Artificial Intelligence 331 (2024) 104111

Contents lists available at ScienceDirect

Artificial Intelligence

journal homepage: www.elsevier.com/locate/artint

A neurosymbolic cognitive architecture framework for handling

novelties in open worlds ✩

Shivam Goel a,∗,1, Panagiotis Lymperopoulos a,∗,1, Ravenna Thielstrom a,
Evan Krause a, Patrick Feeney a, Pierrick Lorang a,c, Sarah Schneider a,c, Yichen Wei a,
Eric Kildebeck b, Stephen Goss b, Michael C. Hughes a, Liping Liu a, Jivko Sinapov a,
Matthias Scheutz a,∗

a Tufts University, 419 Boston Ave, Medford, 02155, MA, USA
b The University of Texas at Dallas, 800 W Campbell Rd, Richardson, 75080, TX, USA
c AIT Austrian Institute of Technology GmbH, Center for Vision, Automation & Control, Giefinggasse 4, Vienna, 1210, Austria

A R T I C L E I N F O A B S T R A C T

Keywords:

Open-world novelty
Cognitive architecture
Learning and perception
Creative problem solving

“Open world” environments are those in which novel objects, agents, events, and more can
appear and contradict previous understandings of the environment. This runs counter to the
“closed world” assumption used in most AI research, where the environment is assumed to be
fully understood and unchanging. The types of environments AI agents can be deployed in are
limited by the inability to handle the novelties that occur in open world environments. This
paper presents a novel cognitive architecture framework to handle open-world novelties. This
framework combines symbolic planning, counterfactual reasoning, reinforcement learning, and
deep computer vision to detect and accommodate novelties. We introduce general algorithms
for exploring open worlds using inference and machine learning methodologies to facilitate
novelty accommodation. The ability to detect and accommodate novelties allows agents built
on this framework to successfully complete tasks despite a variety of novel changes to the
world. Both the framework components and the entire system are evaluated in Minecraft-like
simulated environments. Our results indicate that agents are able to efficiently complete tasks
while accommodating “concealed novelties” not shared with the architecture development team.

1. Introduction

Traditionally, AI research has focused on agents operating in “closed worlds” where all task-relevant concepts are assumed to be
known in advance and designers can utilize this knowledge to construct specific algorithms based on this information [6,21]. Agents
might still have to learn about instances of these concepts and their distributions, and maybe even cope with out-of-distribution cases,
but at least they can assume that no conceptual changes will occur to task-relevant aspects that they would have to accommodate in

✩ This article belongs to Special Issue: Open-World AI.

* Corresponding authors.

E-mail addresses: Shivam.Goel@tufts.edu (S. Goel), plympe01@tufts.edu (P. Lymperopoulos), Matthias.Scheutz@tufts.edu (M. Scheutz).
Available online 15 March 2024
0004-3702/© 2024 Elsevier B.V. All rights reserved.

1 These authors contributed equally.

https://doi.org/10.1016/j.artint.2024.104111
Received 2 February 2023; Received in revised form 30 December 2023; Accepted 4 March 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:Shivam.Goel@tufts.edu
mailto:plympe01@tufts.edu
mailto:Matthias.Scheutz@tufts.edu
https://doi.org/10.1016/j.artint.2024.104111
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2024.104111&domain=pdf
https://doi.org/10.1016/j.artint.2024.104111

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

Fig. 1. An example of the gridworld environment. The novel actor is highlighted in blue, while the rest of the environment is known to the agent. (For interpretation
of the colors in the figure(s), the reader is referred to the web version of this article.)

order to complete their task (e.g., a self-driving car having to discover the concept of a car ferry which it would have to take to cross
the river in order to get to its goal location as the bridge was just closed for traffic).

The transition from closed to open worlds thus necessitates that artificial agents be able to handle task-relevant novelties as they
present themselves during task performance. While some of the unknown aspects of the environment might not have any impact
on the agent’s actions, others might be preventative in that without “accommodating” them, the agent can no longer accomplish its
task. While accommodation does not necessarily require that the agent be able to detect the unknown aspect (e.g., a detour on the
road leading directly onto the ferry), in general detection, and in some cases explicit characterization, of the novelty will often be a
critical component (e.g., no detour, only a road sign suggesting to take the ferry).

The goal for the development of novelty-aware agents thus is to integrate methods into the agent architecture that allow the agent
to detect novelties and accommodate them. We propose a hybrid symbolic-subsymbolic inference-based approach that at its core uses
symbolic and subsymbolic statistical inferences to make predictions about possible and likely world states. When these predictions
fail, the agent assumes that its knowledge about the world is incomplete and might have to be augmented. Depending on the impact
of the prediction failure on its task performance, the agent might decide to continue with its task and explore the novelty later, or it
might immediately engage in a comprehensive exploration process during which it attempts to acquire additional knowledge to be
able to handle the novelty. Depending on the novelty, the agent might be able to generate an explicit symbolic characterization of
the novelty that will allow it to reason and plan with it, or it might only have an implicit classification that is sufficient for triggering
actions that utilize or avoid it.

Our contributions in this paper are: (1) An agent-centric categorization of novelties for goal-oriented planning agents, (2) a
hybrid architectural approach that combines symbolic planning and counterfactual reasoning with reinforcement learning and deep
computer-vision techniques to perform novelty detection and accommodation; (3) domain-general algorithms for novelty handling
and explorations using inference and reasoning methodologies that include machine learning techniques; and (4) comprehensive
evaluations of the agent architecture that range from evaluations of individual components to system evaluations performed by a
dedicated evaluation team on “concealed novelties” that were not shared with the algorithm and architecture development team.

2. What is a novelty?

We depart from the assumption that novelty is a property of objects as it is sometimes treated in the recent literature on open-
world novelty (e.g., [6]), and instead view novelty as an intrinsically agent-relative concept, i.e., a relation between aspects of an
environment and an agent’s cognitive system. This is easy to see because what is a novel object or concept for one agent (e.g., like
a mass spectrometer for a diabetes patient, say, because the agent has not encountered it before or cannot derive any knowledge
about it) might not be novel for another agent (e.g., the doctor using it to determine the distribution of metabolites). Hence, when
we talk about novelty in this paper, we always have an epistemic agent in mind for whom something is novel because the agent
has not experienced it and cannot derive representations of it from its knowledge base (cp. [41]). To better illustrate what kinds of
novelties an agent might encounter and when it should care about them—when it ought be able to detect and handle them, and
maybe characterize them to be able to utilize them for their purposes in the future—we will use a simple gridworld environment,
based on the popular Minecraft game (see Fig. 1) where the agent’s task is to craft a pogostick. We will later use the very same
environment for comprehensive evaluations of the proposed novelty-aware agent architecture.

The environment contains any number of objects such as trees on which the task-performing agent (just called “the agent”) can
perform actions such as breaking them into logs, which, in turn, can be crafted into planks and sticks. There is also a crafting-table that
the agent can use to craft complex items such as a tree-tap and a pogostick using pre-defined crafting recipes. The agent can also mine

diamond from diamond ore. And the environment has a safe which can be used to store items. In addition to objects, the environment
can also have various actors, i.e., agent types such as traders which can interact and trade items, or the pogoist, an adversary which
2

competes with the agent in collecting resources from the environment to craft a pogostick.

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

Now consider an agent that has knowledge of all aspects of this environment, either through past experience or through having
been endowed with the knowledge a priori. In other words, nothing in the environment is novel for the agent. Suppose a change is
introduced while the agent is performing its task, e.g., in the form of new objects, new environment dynamics, new relations, etc. In
the environment in Fig. 1, a new actor, referred to as supplier (highlighted in blue) was introduced and may have unknown effects on
the agent’s ability to craft a pogostick.

Depending on the characteristics of the new actor and its relation to the agent, some aspects of it may be novel for the agent.
For instance, the supplier may relate to objects in the world in previously unknown ways, it may be visually distinct from any actor
known to the agent, or may behave differently than any other actor previously encountered by the agent. Regardless of the aspect
of the supplier that is novel to the agent, detecting the novelty can be useful or even necessary if the supplier can affect the agent’s
ability to achieve its task goals. For example, it may be that

• without interacting with this new actor, it is no longer possible to obtain the required ingredients to craft the pogostick,
• crafting a pogostick is still possible without interacting with the supplier, but the supplier can still assist the agent in crafting

the pogostick more efficiently, or
• the supplier has no effect on the agent’s task and interaction with it offers no utility to the agent.

To determine which is the case, the agent needs to explore different interactions with the supplier.
In general, novelty-aware agents need to be able to identify situations that are unknown or inconsistent with their knowledge

of the environment, and have strategies to explore and incorporate new knowledge from those explorations into their knowledge
representations.

Novelty detection. Novelty detection is the process of identifying representations inconsistent with the agent’s prior knowledge.
Depending on the knowledge representations that the agent maintains, the process of detecting novelty can vary. For instance,
the agent encountering the supplier may recognize it as a novel agent by its appearance, which differs from other agents it has
encountered in the past.

Novelty accommodation. Novelty accommodation, then, is the process of gaining and incorporating new knowledge related to the
novel aspect into an agent’s knowledge representation. Accommodation might be imperative when the novelty negatively affects the
agent’s ability to achieve its task. For instance, after visually identifying the supplier, the agent might need to explore interactions
with it to characterize the supplier’s potential impact on its goals. Different accommodation strategies may be necessary depending
on whether the supplier is beneficial or detrimental to the agent’s goals and no accommodation is necessary if the supplier has no
impact on them.

Designers of novelty-capable agents need, to some extent, anticipate novelties to bootstrap the agent to start up with some ontol-
ogy that allows it to carve up the world into different categories. However, the central motivation for developing agent architectures
and methods that detect, characterize, and accommodate novelty is that in open worlds, designers are not able to anticipate all
possible states that might constitute novelties for the agent.

Finally, since novelty is an agent-relative concept, an agent might find many novelties that are trivial or not task-related. Further-
more, any given unknown element of the environment can represent a large number of novelties, as not only is the element itself
unknown, but so may its properties, its relations to other elements, etc. In this work, our agent is task-oriented and so exhaustively
searches for novelties for the sake of discovering them but only handles them when necessary. This also blocks it from discovering
many useless novelties (e.g., different arrangements of trees constituting different spatial relationships). However, our architecture
can, in principle, be used as an information-gathering agent if the goal is to discover as many novelties as possible.

3. Theoretical framework

We start with general definitions of a task environment with agents and objects in order to be able to formally define what we mean
by “novelty”: a relation between the agent and aspects of the environment (cp. to the definition in [41]). We then define different types
of novelties based on how they impact an agent’s task performance.

3.1. The formal agent-environment framework

We consider a task environment  = ⟨𝐸,  ⟩ to consist of a (not necessarily finite) set of environmental states 𝐸 and a set 
of time-indexed maps 𝑡 ∶ 𝐸 ↦ 𝐸 for 𝑡 ∈ ℕ that defines the evolution of states, i.e., given a state 𝑒 ∈ 𝐸, 𝑡(𝑒) is the state of the
environment  at time 𝑡. We can define a reachability relation (𝑥, 𝑦) iff ∃𝑡𝑡(𝑥) = 𝑦 indicating whether a state is reachable from
another state, given the environmental dynamics. In other words, the environment may contain any number of objects and agents as
part of its state (e.g., placed in locations for spatially extended environments) with agents differing from objects in that they have
internal states and can cause state changes through internal (computational) processes while objects are inert without internal states
3

or internal processes.

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

Fig. 2. Overview of the Agent-Environment Interface. The agent represents the environment state symbolically in the language . The agent does not have complete
knowledge, so a state description can correspond to many true environment states. It also observes the environment subsymbolically. The agent uses an operator 𝑜 of
its planning domain to transition in the environment to a new state via the executor 𝜒𝑜 .

We define an agent  = ⟨𝜁, Ξ, , ⊢⟩ to be equipped with a set of sensors 𝜁2 that allow it to perceive the environment,
a set of effectors Ξ

3 that allow it to act upon the environment, a knowledge repository  = (𝐾𝐵, Θ) (potentially empty) that
can hold different representations, e.g., symbolic descriptions of 𝐸 in some formal language or “subsymbolic representations” like
sensory or effector states. The knowledge base 𝐾𝐵𝐴 is symbolic and stores knowledge explicitly in terms of facts and rules in a formal
language. On the other hand, Θ stores knowledge about subsymbolic and neural representations in a distributed manner, such as
in the weights of a neural network. The agent also has an internal inference operator ⊢ that enables it to perform manipulations of
its knowledge representations, e.g., to perform different types of inference for different knowledge modalities in . For 𝐾𝐵, we
define ⊢ to represent a first-order prover that can derive new facts from the 𝐾𝐵, while for Θ we define it to represent a neural
inference algorithm. In general, at a given time 𝑡, the agent’s sensors will generate agent-internal representations 𝑋 of partially
observed environment states in 𝐸 and the agent’s effectors Ξ at time 𝑡, given the environmental state, will cause an update to the
environmental state at time 𝑡 +𝛿, thus implicitly defining a set of “actions” 𝐴 that specify how the agent can affect the environment.
Actions can be triggered by the agent through its internal inference algorithms (the “agent function”). A note on notation: We will
drop the agent subscript going forward if it is clear from the context which agent we are referring to.

While the above definitions allow for a diverse array of agent models, we will consider cognitive agents for the rest of the paper that
can reason and plan using a first-order language (FOL)  while also representing aspects of the environment subsymbolically (e.g.,
visually in images) and reasoning with those representations non-symbolically. The agent has a set of 𝑛 − 𝑎𝑟𝑦 predicates 𝑃 (denoting
relations or atoms) over a set of variables 𝑉 and constants 𝐶 (with constants, for example, denoting objects or locations in the
environment). An atom over the language  is represented by 𝑝(𝑢1, … , 𝑢𝑛), 𝑢𝑖 ∈ 𝐶 ∪ 𝑉 and ¬𝑝(𝑢1, … , 𝑢𝑛) its negation. If 𝑢𝑖… 𝑢𝑛 ∈ 𝐶 ,
then 𝑝(𝑢1, … , 𝑢𝑛) is a grounded atom.  can then be used to express knowledge about  such as facts, rules, and relations between
states in 𝐸.

Agents can perform tasks in the environment using explicit task descriptions defined in a “planning domain” represented as
Σ = ⟨ , ⟩, where  is a (partial) description in  of states in 𝐸 and  is a set of operators expressed in , with preconditions 𝜓𝑜

and effects 𝜔𝑜, corresponding to (sequences of) actions the agent can perform. Each planning domain operator in  is associated
with a “lower-level action executor” 𝜒 ∈  defined as a triplet of functions ⟨𝛾, 𝜋, 𝛽⟩ over  . The functions 𝛾 and 𝛽 indicate which
state descriptions in  are the acceptable start and end state descriptions for the executor 𝜒 and the function 𝜋 ∶  ↦ 𝐴 is a policy
indicating which actions are taken in each state. The state description of a state 𝑠 ∈  includes information about all the objects 𝑂
and actors Φ in the domain.

Fig. 2 illustrates the distinction between state descriptions, environmental states, and subsymbolic state observations. Symbolic
state descriptions do not enjoy a one-to-one relation to environment states, as the agent may not be omniscient. As a result, a
particular state description may correspond to a set of possible environment states. Similarly, subsymbolic state observations 𝑋 (e.g.,
images) also do not fully describe the environment state. The agent uses planning operators 𝑜 ∈ to generate plans. The executor
𝜒𝑜 ∈  associated with 𝑜 executes actions that, in accordance with the state transition relation , modify the environment state.

A planning task 𝑇 = ⟨Σ, 𝑠0, 𝑠𝑔⟩ defines a set of initial state descriptions 𝑠0 and a set of goal state descriptions 𝑠𝑔 using  in the
planning domain Σ. The agent , using state descriptions 𝑠 ∈  , along with operators 𝑜 ∈, can use inference ⊢ to produce a plan
 =

[
𝑜1,… , 𝑜∣|

]
that solves the planning task 𝑇 , indicated by  ⊳𝑇 , if one exists and the agent’s algorithm can find it. We consider

2 We consider sensors to be maps from the set of environment states 𝐸 and internal (sub)symbolic state representations to internal (sub)symbolic state representa-
tions. This distinction allows for internal states that influence perception.
4

3 We consider effectors to be maps from the internal (sub)symbolic states and environmental states to the internal (sub)symbolic states to environmental states.

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

that 𝑃 ⊳ 𝑇 if executing the actions (through executors) corresponding to the operators in  in states consistent with descriptions in
𝑠0 will take the agent to states consistent with descriptions in 𝑠𝑔 .

3.2. Novelties

Given an environment  , an agent , and a planning task 𝑇 , the agent needs to complete the task 𝑇 . However, it is often the
case that  does not have complete knowledge of  as there may be aspects of environment states in 𝐸 that cannot be derived
from the agent’s knowledge repository . As defined earlier, these elements constitute novelty for . Specifically, a representation
𝜈 of an aspect of an environment state 𝐸 is a novelty for the agent  if  ⊬ 𝜈 where the representation 𝜈 could be in  or a
subsymbolic representation (e.g., an image). A set of novelty representations4 is represented as  . The process of incorporating
novelty representations  in the agent’s knowledge repository  is denoted as 𝐾𝐵 ∪ for symbolic representations and Θ ∪ for
subsymbolic representations of novelties.

The existence of a set  for the agent  can have varying effects on its ability to solve a task 𝑇 and we will define some novelty
types accordingly:

Definition 1. [Prohibitive novelty] A novelty represented by 𝜈 is prohibitive (for agent  and task 𝑇) if for all plans  , 𝐾𝐵 ⊢  ,  � 𝑇 ,
but ∃𝜈 ⊳ 𝑇 and 𝐾𝐵 ∪ {𝜈} ⊢ 𝜈 .

In other words, prohibitive novelties for the agent  are aspects of the environment that the agent needs to represent and reason
with to generate a successful plan.

Definition 2. [Obstructive novelty] A novelty represented by 𝜈 is obstructive (for agent  and task 𝑇) if it causes the execution of an
executor 𝜒 ∈  to fail.

Obstructive novelties for the agent  thus may or may not impact the agent’s task performance depending on whether the agent
included the operator associated with the failing executor in its plan. Especially in cases where no other plan can be found, knowledge
of the novelty might help the agent to either modify the failed executor or replace it with a new working executor.

Definition 3. [Beneficial novelty] A novelty represented by 𝜈 is beneficial (for agent  and task 𝑇) if ∃𝜈 𝐾𝐵 ∪ {𝜈} ⊢  such that
𝜈 ⊳ 𝑇 and ∀ , 𝐾𝐵 ⊢  ,  ⊳ 𝑇 , |𝜈| < ||.

In other words, beneficial novelties for the agent  are novelties whose representations can help the agent solve the planning
task 𝑇 in fewer steps than its original plan  (alternatively, when action costs are defined for plans, such novelties would result in
lower-cost plans).

Definition 4. [Nuisance novelty] A novelty represented by 𝜈 is a nuisance (for agent  and task 𝑇) if
∀𝜈 𝐾𝐵 ∪ {𝜈} ⊢ 𝜈 such that 𝜈 ⊳ 𝑇 , ∃ ⊳ 𝑇 , 𝐾𝐵 ⊢  and |𝜈 | ≥ ||.

In other words, nuisance novelties for an agent  do not contribute to task performance nor do they obstruct it; they may only
cause higher performance costs (in terms of plan length, or plan costs if a notion of action cost is defined).

It should be clear from the above definitions that all the novelty types are agent-relative and thus depend on a particular agent’s
makeup, including sensors, effectors, knowledge representations, etc. Hence, what is a prohibitive novelty for one agent, might be a
nuisance novelty for another agent or no novelty for yet another one.

The goal for our agent design then is to handle novelties, i.e., when an agent  encounters a novelty represented by 𝜈, it needs
to assess how the novelty affects its task-solving ability (i.e., prohibitive, obstructive, beneficial, nuisance) and experiment with
the novelty to expand or correct its knowledge repository . In cases where the agent’s goal is knowledge discovery, exploration
strategies informed by the detected novelty can be employed to further expand . In goal-oriented settings where task completion
takes precedence, the potentially intractable number of novelties motivates limiting exploration to cases where task completion is
compromised, or when there are very strong environmental cues (i.e. passive detection of novelty). In those cases, any additional
knowledge incorporated into  can then be used for inference to solve its task 𝑇 .

4. An architectural framework for novelty handling

We introduce the architectural framework (depicted in Fig. 3) for developing novelty-aware agents composed of several com-
ponents that, through their function and interactions, define the agent’s knowledge repository , its inference algorithms ⊢, and
operate its sensors 𝜁 and effectors Ξ.

4 Note that the agent’s symbolic or subsymbolic representational repertoire is a hard limit for the agent’s ability to capture novelties. We are not considering
5

“growing agents” here that might be able to extend their cognitive system’s representational formalism and capacity.

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

Fig. 3. High-level architecture diagram of the relevant components for novelty handling (highlighted in colored boxes) and the information flow among them (see
text for details).

The agent has a DOMAIN INTERFACE component that mediates its interactions with the environment through the sensors 𝜁 and
effectors Ξ (this will typically be itself a set of components for different sensors and effectors but we are not concerned with those
architectural details in this work). Sensory information is organized into symbolic state descriptions 𝑠 ∈  and passed on to other
components for processing, including recognized actions of other actors in the environment. Additionally, subsymbolic perceptions
𝑋 (e.g. images) acquired by the sensors are also made available by the DOMAIN INTERFACE.5

The knowledge base 𝐾𝐵 ∈  stores facts using  about the environment as extracted from state description obtained from
the domain interface, as well as the operators  available to the agent. The GOAL MANAGER and TASK PLANNER are the symbolic
inference mechanisms of the architecture. The GOAL MANAGER detects novelty by comparing inferred expected state descriptions
from rules and facts in 𝐾𝐵 to state descriptions obtained through the DOMAIN INTERFACE. The TASK PLANNER generates plans for
the agent to execute in the environment. The GOAL MANAGER also detects novelty due to plan failure. Whenever novelty is detected,
it is submitted to the 𝐾𝐵 for further inference and exploration.

The subsymbolic knowledge repository Θ ∈ is composed of the VISION MODEL and AGENT MODEL components, which make up
the neural inference algorithms of the agent. The VISION MODEL receives subsymbolic state descriptions (e.g., images) and detects
out-of-distribution samples using statistical methods. The AGENT MODEL receives symbolic state descriptions and, with statistical
methods, monitors the behavior of other actors in the environment to detect when their behavior is inconsistent with the agent’s
expectations. When either component detects novelty, it sends a description of the novelty to the 𝐾𝐵.

The NOVELTY EXPLORATION component is comprised of symbolic novelty exploration algorithms, as well as a reinforcement
learner that can learn policies to form new executors if necessary. It accepts a description of the novelty and symbolic state from the
𝐾𝐵. It returns sub-goals to the GOAL MANAGER that aim to explore the environment or specifications of operators that can be used
to aid in solving task 𝑇 . The operation of these components is described in detail in subsequent sections.

4.1. Symbolic inference

Symbolic inference is performed by the GOAL MANAGER and TASK PLANNER on facts and rules from the 𝐾𝐵 to solve task 𝑇 and
to detect novelties  .

4.1.1. Knowledge base

The knowledge base 𝐾𝐵 ∈  stores facts about symbolic state descriptions  using the language . It is populated with facts
and rules defined a priori and through interaction with the environment. This may include objects, actors, functions, symbolic state
representations, and a semantic type hierarchy used to describe planning tasks.

During execution, other components in the architecture may assert, retract or query facts in 𝐾𝐵 to detect novelty, create plans,
or store new knowledge. The 𝐾𝐵 is part of the knowledge repository  against which novelties are detected. As a result, when
information about a detected and explored novelty is asserted into 𝐾𝐵, subsequent encounters with it will no longer be novel for
the agent. This is not limited to novelties detected using symbolic inference, as novelties detected with neural inference are also
eventually expressed in  and stored in 𝐾𝐵.

5 Ideally, all symbolic information such as state descriptions and recognized actions by other agents would be obtained from a vision or perceptual processing
module, but because our focus is not on scene descriptions and action recognition from images, we allow the DOMAIN INTERFACE to already provide these pre-
6

processed percepts.

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

4.1.2. Task planner

The TASK PLANNER is one of the two symbolic inference mechanisms utilizing the 𝐾𝐵. Once a desired goal state description 𝑠𝑔
is received from the GOAL MANAGER, the TASK PLANNER retrieves a planning domain definition Σ (operators, predicates, etc.) and
an initial state description 𝑠0 from the 𝐾𝐵 to form a planning task 𝑇 and searches for a plan  ⊳ 𝑇 . Whether a plan is found or not,
along with the plan itself, is then submitted to the GOAL MANAGER for further inference and execution.

4.1.3. Goal manager

The GOAL MANAGER is responsible for managing the agent’s top-level goal(s), which can consist of multiple concurrent goals, and
is responsible for detecting novelties in symbolic state descriptions. The component submits goals to the TASK PLANNER and performs
inference on state descriptions, a process during which novelties of different types may arise due to planning failure, execution
failure, or unexpected aspects of state descriptions. The general principle for detecting novelty with symbolic inference is predicting
next environment states and comparing predictions with observed states. Once a novelty is detected, the GOAL MANAGER produces
a description of it and asserts it to the 𝐾𝐵. Depending on the novelty, the produced description contains information about the
environment state, the aspects of it that are novel as well as any operators that may exhibit unexpected behavior. Depending on
the novelty type, the NOVELTY EXPLORATION component (see Section 4.3) may be invoked. The GOAL MANAGER is also the primary
component communicating with the DOMAIN INTERFACE.

Prohibitive novelty. Prohibitive novelties are most often encountered due to the failure of the TASK PLANNER. For a given goal, the
GOAL MANAGER consults the TASK PLANNER for a plan  to execute. If the TASK PLANNER fails to find a plan for a particular goal,
assuming that the goal is achievable based on the agent’s knowledge, then the failure may be due to an prohibitive novelty.

Obstructive novelty. Obstructive novelty is most likely encountered due to plan execution failure. Once a plan sequence has been
generated, the GOAL MANAGER enters an execution phase where it verifies that each operator’s preconditions are met. In this
inference task, the DOMAIN INTERFACE is consulted to verify that the preconditions 𝜓𝑜 of an operator 𝑜 ∈  hold in the current
symbolic description of the environment state. If inference on prior states indicates that all of the operator’s preconditions 𝜓𝑜 should
be met, but they are not in the current state, this constitutes a novelty. If all preconditions are met, the executor 𝜒𝑜 of the operator
is sent to and executed by the DOMAIN INTERFACE component. The agent may receive feedback through the DOMAIN INTERFACE

component indicating the success or failure of the executor. In case of failure when success was anticipated, this again constitutes
novelty. Additionally, obstructive novelty may occur even when an executor succeeds, if its effects are not consistent with the agent’s
expectations.

Beneficial and nuisance novelty. Success in the task does not eliminate the possibility of novelty. The GOAL MANAGER may still
encounter beneficial or nuisance novelties during its inference of the expected state of the world. If the inferred state does not match
the observed state of the world solicited from the DOMAIN INTERFACE, then that still constitutes a novelty, regardless of its effect on
the task. Otherwise, plan execution continues until all operators in the plan have been executed.

In all cases where novelty is detected, a symbolic description of it is asserted to 𝐾𝐵 and sent to the NOVELTY EXPLORATION

component, which utilizes different exploration policies depending on the way novelty is encountered. Novelty descriptions involve
information about the aspects of the environment state that are novel such as novel objects and unexpected or missing operator
effects. If the agent’s goal is knowledge discovery, GOAL MANAGER can also enumerate sub-goals for the agent to achieve to test for
novelty in different environment states or to further explore previously detected novelty. However, in goal oriented environments
such extensive exploration is limited to novelties that prevent task completion.

4.2. Neural inference

The architecture’s neural inference components are used to detect novelty in the subsymbolic state representations 𝑋 as well as
in statistical relationships between elements of the state descriptions  .

The knowledge repository Θ ∈ stores the agent’s knowledge of these modalities in the form of machine learning model param-
eters. The first component for neural inference is VISION MODEL, which implements a visual novelty detector based on images from
the DOMAIN INTERFACE. The second component of neural inference is an AGENT MODEL that models the behavior of other actors
in the world to detect deviations from their known behaviors. If either module detects model deviations with sufficient confidence,
a symbolic representation of the hypothesized novelty is submitted to the knowledge base for further inference and exploration. A
general design principle for neural novelty detectors is an emphasis on caution: Given the distributional nature of neural models, we
set conservative thresholds for novelty detections to minimize false positives. This is especially important when the agent’s priority
is task completion, as false positive detections can result in superfluous exploration that may hinder task performance.

4.2.1. Vision model

The VISION MODEL is responsible for detecting visual novelty. At every step, the DOMAIN INTERFACE provides a 2-dimensional
color image of the agent’s current view of the world. The VISION MODEL’s task is to determine whether each new input image
represents a plausible view of the known standard environment, or a different “novel” distribution. Some authors refer to similar
problems as anomaly detection or out-of-distribution detection [47]. Visual novelties could include new object types, new agent
7

appearances, or new backgrounds. Scene composition properties could also change (sizes, frequencies, relative locations, etc.).

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

To solve the detection problem, our VISION MODEL takes a deep autoencoder approach, following Abati et al. [1]. Deep autoen-
coders are often applied to visual novelty detection for their ability to learn effective representations of data through self-supervision
[43]. The model consists of two component neural networks: an encoder e𝜙 with weights 𝜙 that maps image 𝑋 to a code vector
𝑧 ∈ ℝ𝐶 , and a decoder d𝜙′ with weights 𝜙′ that maps code vector 𝑧 back to an image 𝑋. After a model is suitably trained (see
below), given a new image 𝑋̃, the model assesses possible novelty via reconstruction error: 𝑟(𝑋̃; 𝜙, 𝜙′) = ||𝑋̃ − 𝑑𝜙′ (𝑒𝜙(𝑋̃))||2, which
measures Euclidean distance between the input and its reconstruction. Intuitively, a well-trained model should have low reconstruc-
tion error for images that represent the normal environment used for training, while images containing novelty will yield higher
error. The effectiveness of this novelty detection method is determined by the separability of the normal and novel reconstruction
error distributions [45]. The VISION MODEL can pass the reconstruction error signal directly to the Symbolic Inference. Naturally,
we can also apply a threshold 𝜏 to produce binary detection decisions, where “novelty” is called if 𝑟(𝑋̃) > 𝜏 and “normal” otherwise.
The value of 𝜏 can be selected on a validation set containing labeled examples of normal and novel data to maximize a performance
metric of interest.

The VISION MODEL can be trained in advance on a dataset of images depicting the “normal” environment. Given 𝑁 training
images, we seek encoder and decoder weights 𝜙, 𝜙′ that minimize the total reconstruction error:

∑
𝑛 𝑟(𝑋𝑛; 𝜙, 𝜙′). This can be solved

via stochastic gradient descent [1], and the optimal weights 𝜙, 𝜙′ stored within Θ for later processing.
If the VISION MODEL detects abnormal images, it generates a description  that is sent to 𝐾𝐵. The description includes an

identifier that allows the 𝐾𝐵 to associate a visually-detected novelty with the state description of the environment state in which it
was observed. Since no additional information is extracted, it is difficult to accommodate novelties that are detected only visually.

4.2.2. Agent model

The AGENT MODEL is a crucial part of the architecture when operating in multi-agent environments. It uses neural inference over
symbolic state descriptions and is responsible for maintaining knowledge about other actors. The aim of the AGENT MODEL is to
evaluate whether facts about other agents contained in symbolic state descriptions are consistent with its knowledge of those agents’
behavior. One major factor we consider here is the type (e.g. supplier or pogoist from the example in Section 2) of other agents.

Behavioral modeling with behavioral cloning. The main approach of the AGENT MODEL is to model other agents’ behaviors via behav-
ioral cloning (BC).6

Suppose other actors Φ identified in the state descriptions  have actor-types in a set 𝑄, also provided in the state description.
For each type 𝑞 ∈ 𝑄, the AGENT MODEL learns the policy 𝜋(𝑎|𝑠, 𝑞) of an agent of type 𝑞. It is implemented with a neural network
nn𝜃(𝑠, 𝑞), which outputs the probability of actions in the action space 𝐴𝑞 of the agent of type 𝑞. Here the input (𝑠, 𝑞) is represented
as a feature vector. If necessary, other representations such as graphs and text can also be consumed by neural networks. If complete
knowledge of another actor’s state is not known, then a pseudo-state 𝑠′ can be inferred using knowledge in . Then the model
becomes nn𝜃(𝑠′, 𝑞) and the action likelihood can be estimated. The model is trained via supervised learning using the true actions
each actor took at that state (described in symbolic representations). The resulting model parameters 𝜃 are stored in Θ and used to
evaluate action likelihoods during execution. The exact architecture, hyper-parameters, training procedure and feature representation
is also application dependent and is discussed in the experiment section.

Unlikely action detection. During operation, the AGENT MODEL uses the learned neural network to monitor an actor’s behaviors and
detect unlikely actions. Our agent may encounter actors that deviate from their actor-type’s policy. Such an event is inconsistent with
the agent’s  in the sense that the actors exhibit behavior that is unlikely under the actor policies encoded in Θ. Such novelty can
be detected by evaluating the likelihood of observed actions using nn𝜃 . Focusing on a single actor of type 𝑞 ∈𝑄 and its action 𝑎 ∈𝐴𝑞

from a symbolic state description 𝑠 ∈  , the likelihood under the learned model is computed by 𝑙 = nn𝜃(𝑠, 𝑞). Then, 𝑙 is compared
to previously encountered values to decide if 𝑎 deviates from the known distribution. For instance, if nn𝜃 is trained offline with a
dataset of trajectories from the environment, then a portion of the dataset can be used for validation to set a threshold below which
actions are considered inconsistent with the model for that actor type.

Actor type classification. Using the model nn𝜃 , the AGENT MODEL can also classify actors into the known actor types 𝑄. During
operation, a voting scheme over the 𝑄 known actor types is used to classify actors into types using their action likelihoods. The
voting-based actor type classifier is described in Algorithm 1.

The predicted types can be compared with the types extracted from the symbolic description to determine if some actors deviate
from their actor types.

If the AGENT MODEL detects novelties due to unexpected actor behavior, it can provide feedback to the rest of the architecture for
accommodation. It produces a symbolic description 𝜈 that includes the state description in which novelty was detected, any unlikely
actions detected for each actor in the environment and an indicator of the inferred agent-types using the vote-based classifier, if they
deviate from those expected. The novelty description is submitted to the 𝐾𝐵 and used for accommodation if necessary.

6 Behavioral cloning [4,11,3] is an offline reinforcement learning technique that learns policies from a dataset of actor trajectories. That dataset can be collected
8

from repeated interactions with the environment and the policies are learned using supervised learning.

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

Algorithm 1 Voting-based actor classification.
1: Inputs:

2: 𝐷 = {(𝑠𝑖, 𝑎𝑖)|𝑖 = 1..𝑀} ⊳ state and actions observations
3: nn𝜃 ⊳ Learned actor policies
4: 𝑄 ⊳ Set of known actor types
5: procedure:

6: 𝐯 ← 0, 𝐯 ∈ℕ|𝑄|
0 ⊳ Vote vector

7: while not empty(D) do

8: (𝑠, 𝑎) ←𝐷.𝑝𝑜𝑝()
9: 𝑏 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑞∈𝑄 [nn𝜃 (𝑠, 𝑞)]𝑎 ⊳ Vote for actor-type 𝑏

10: 𝑣𝑏 ← 𝑣𝑏 + 1
11: end while

12: return 𝑞← 𝑎𝑟𝑔𝑚𝑎𝑥(𝐯) ⊳ Plurality Vote

4.3. Novelty exploration component

The NOVELTY EXPLORATION component receives symbolic descriptions of novelties from the GOAL MANAGER and is responsible
for generating exploration strategies depending on the type of novelty encountered. These include heuristic search strategies on the
symbolic descriptions of states (and on failed operators) as well as knowledge-guided reinforcement learning-based exploration to
learn new executors for existing failed operators.

Knowledge discovery. If the NOVELTY EXPLORATION component receives a novelty description before the agent attempts to generate
a plan, then the type of the novelty (i.e. how it may impact its ability to solve the task) has not yet been determined. In that case,
a cursory knowledge discovery routine is utilized to gather information about the encountered novelty. The exploration strategy is
dependent on the symbolic description of the novelty and can involve exploratory subgoals and operators related to the novelty.7 To
avoid taking too much time away from the agent’s task, this routine is only given a limited time to run before the agent moves on and
begins to plan for its main goal. If additional information about the novelty is gathered from knowledge discovery, it is appended to
the symbolic novelty descriptions  and, if the task is interrupted later on, this information can be used during failure recovery (as
described in the next section) or knowledge discovery can resume with any exploration strategies of the novelty that it previously
did not have time for.

For instance, if a novel actor is encountered (see example in Section 2), the NOVELTY EXPLORATION component would submit
subgoals to the GOAL MANAGER involving interactions with the novel actor. These subgoals are generated using the agent’s type hier-
archy: known operators applicable to known actors are used on the novel actor. Such interactions may reveal additional information
about the novelty and aid in failure recovery depending on the novelty type.

4.3.1. Failure recovery

The FAILURE RECOVERY component is responsible for deploying recovery strategies for novelty accommodation and is invoked
when novelty causes a planning or execution failure.8 Depending on the novelty description it receives, it employs various recovery
strategies to address the particular failure.

Fig. 4 (Left) illustrates the agent’s recovery policies for different failure cases attributed to novelty. Special attention is paid when
novelty is attributed to the effect failure of an operator. Fig. 4 (Right) shows in detail the strategies employed when an operator’s
known effects are inconsistent with the state description after its execution. Depending on the severity of the failure, the agent
employs different recovery strategies. If the state description is consistent with only a subset of the operator’s effects (partial effect
failure), then the 𝐾𝐵 is updated with the new effects, and the agent attempts to replan. If instead, none of the operator’s effects
are observed (total effect failure), the agent attempts to discover new operators that may assist it in solving the task. This process
involves hypothesizing new preconditions, a heuristic search over known operators to uncover unknown effects, and a reinforcement-
learning-based exploration methodology that learns new executors for failed operators. These strategies may be executed in the order
presented, or may be applied to novelties at any order depending on the domain implementation and novelty descriptions. Overall
the failure recovery policies are general and flexible, as each may be involved in recovery from multiple novelty types and they can
be composed to recover from complex failures.

The rest of this section discusses the use of these recovery policies in the context of the novelty types described in Section 3.

Recovery from prohibitive novelty. If the TASK PLANNER fails to produce a plan, then the NOVELTY EXPLORATION component follows
its plan failure policy that employs knowledge discovery. It generates and executes sub-goals to acquire additional information about
plan failure. The generated exploration subgoals attempt to prioritize operators that explore currently unobserved environment states
to update (if necessary) the agent’s prior knowledge about those states. If knowledge discovery fails to produce a plan, the NOVELTY

7 For example, the operators can be selected using the agent’s type hierarchy: If the novelty is a previously unknown property of a known object, then operators
applicable to that object may be attempted. Similarly, if the novelty involves novel actors, appropriate operators may be invoked.

8 It should be noted that the word failure is used to describe a failure in the agent’s knowledge and inference to describe the environment, not necessarily a failure
9

in the task.

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

Fig. 4. Diagrammatic representation of the agent’s recovery policies. (Left) The recovery policies initiated under different failure conditions. (Right) Outline of specific
strategies of the failed operator policy (concerning the failed effects of the operator). Different recovery policies are initiated depending on how novelty is encountered,
and individual strategies may apply to multiple novelty types.

EXPLORATION component utilizes the EXECUTOR LEARNER to discover states from which the agent can produce successful plans to
solve the task.

Following the gridworld example from Section 2, consider a scenario in which the crafting table, an object essential to task
completion, is not present in the symbolic state description. In that case, the agent fails to plan and needs to explore the environment
to find alternate solutions for task completion. For instance, the agent may investigate ways to acquire a crafting table, such as,
opening the safe, visiting other rooms or by interacting with other actors. The agent can then attempt to replan if a way to acquire a
crafting table is discovered.

Recovery from obstructive novelty. The two conditions associated with obstructive novelty are handled using different exploration
strategies.

Precondition failure. As discussed previously, novelty due to unmet preconditions indicates that the agent’s knowledge of the
environment state is inaccurate. Therefore, the recovery strategy updates the agent’s 𝐾𝐵 with the accurate state description obtained
through the DOMAIN INTERFACE. It then prompts the task planner to re-plan.

For instance, a novel actor in the environment may interfere with the agent’s resource gathering by stealing resources before the
agent can collect them but after forming a plan to do so. As a result, the preconditions for that operator no longer hold true (e.g.,
resources are no longer available). In this scenario, the agent should update its 𝐾𝐵 with the accurate state description and attempt
to re-plan.

Partial Effect failure. If all the preconditions of an operator are met, the operator is executed, and the operator’s effects are
compared against the symbolic state description. If a subset of the effects are inconsistent, the GOAL MANAGER infers that the effect
specification of the operator may be inaccurate. The FAILURE RECOVERY component then proceeds with recovery strategies as shown
in Fig. 4 (right).

The failed effects recovery procedure attempts to repair an operator 𝑜 ∈ with unexpected effects 𝜔. The agent applies strategy
1 in Fig. 4 (right), which first updates the operator description in the 𝐾𝐵 to be consistent with its observed effects and then attempts
to re-plan.

Total effect failure. If instead there are no observed effects after executing the executor of an operator, the operator itself
can be said to have failed. The NOVELTY EXPLORATION component has a series of strategies to repair the failed operator. The first
strategy is the same as used for the partial effect failure: the agent updates the operator to reflect that no effects occur and replans.
Another strategy (labeled as Strategy 2 in Fig. 4 (right)) involves repeated attempts to execute the operator to account for instances
of circumstantial failure. More substantial novelty exploration occurs when the agent utilizes the OPERATOR DISCOVERY component,
which employs knowledge-guided search strategies to discover new operators to solve the task. The OPERATOR DISCOVERY component
is discussed in detail in Section 4.3.2.

An example of total effect failure occurs in a more complex variant of the supplier novelty scenario discussed in Section 2, where
the supplier offers to trade the agent a pogostick in return for all the usual ingredients that the agent would use to craft the pogostick.
When the agent initially uses Knowledge Discovery to investigate the new actor in the world, it will interact with the supplier, receive
the trade offer, and incorporate the trade operator into its knowledge base. Since this method of obtaining a pogostick is as efficient
10

as simply crafting one (the agent needs to gather all the ingredients either way), the agent may ignore the supplier and continue with

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

its usual plan of crafting the pogostick. If the crafting operator fails when the agent attempts to craft, the novelty is determined as
obstructive. When the agent attempts to re-plan as part of the Failed Effects recovery policy, it will use the knowledge gained from
interacting with the supplier earlier to create a new plan to obtain the pogostick via the supplier.

Recovery from beneficial and nuisance novelties. Novelty due to unexpected operator effects is not necessarily obstructive. If there are
different effects than expected, rather than no effects at all, it may be that the novel effects are irrelevant or even beneficial for task
completion.

Partial effect failure. As discussed in the recovery for obstructive novelties, when an operator’s effects are inconsistent with the
world state, one of the agent’s accommodation strategies is to modify the operator’s description in 𝐾𝐵 to be accurate with respect to
the environment state descriptions. As a result, when the agent replans, the planner will automatically take advantage of beneficial
novelties if they allow a shorter plan to be created. Similarly, the planner will automatically not involve nuisance novelties in plans.

The agent may encounter a beneficial novelty in a scenario in which the supplier (referring to the example discussed in Section 2),
upon interaction, directly provides the agent with the pogostick at no cost. During Knowledge Discovery, the agent may interact with
the new actor and immediately encounter an Effect Failure when it observes the unexpected effect of receiving a pogostick. This
results in a new operator being created, which the agent can in the future use to acquire a pogostick very quickly.

4.3.2. Operator discovery

In cases when prohibitive or obstructive novelties are attributed to operator failure, the agent needs to discover new operators
that may allow it to solve the task.

Precondition discovery. The first strategy to discover new operators involves precondition exploration. For a given failed operator
𝑜 ∈  with preconditions 𝜓𝑜, a new operator 𝑜′ is constructed with the same effects and executor as 𝑜 but with a new set of
preconditions. The new preconditions 𝜓𝑜′ are constructed using a priority-based order9 of all possible preconditions encountered in
. The preconditions are added to 𝜓𝑜′ one by one, and goals are submitted to the GOAL MANAGER to satisfy them and attempt the
new operator 𝑜′. If the operator succeeds, the broken operator 𝑜 is replaced with this new operator 𝑜𝑖 and added to 𝐾𝐵.

In the earlier gridworld example, consider a scenario where trees cannot be broken into logs without the agent holding a tool, even
though the agent’s prior experience suggests it is possible. In this scenario, precondition discovery will consider a new precondition
of holding a tool before breaking a tree, as the agent knows that holding a tool is a precondition for breaking other resources in the
environment.

Operator variations If the precondition discovery fails to produce a working operator, the agent actively searches for known operators
with unknown effects. This process is guided by the agent’s type hierarchy and has two phases. In the first phase, the agent attempts
(compatible) operators with the same parameters as the failed one. For example, if the operator for breaking a tree is no longer
working, the agent will attempt other operators that accept trees as a parameter to test if any of these operators also yield unexpected
effects. In the second phase, the agent prioritizes operators that act on different parameters of the same type as the failed operator.
In a situation where trees come in different types, if the break operator failed on a birch tree, the agent may attempt to interact with
an oak tree, as it belongs to the same type as the birch, to see if the operator failure is consistent across tree types. If any operator
produces unexpected effects, a new operator 𝑜′ is added to 𝐾𝐵 with those effects noted, and the agent re-plans.

If both precondition discovery and operator variations fail to produce an operator that enables a successful plan, then the agent
attempts to learn a new executor for the failed operator using knowledge-guided reinforcement learning.

4.3.3. Knowledge-guided executor learner

Due to the exponentially large search space of precondition discovery and operator variations, the agent cannot exhaustively
search that space. After expending some effort in those directions to no avail, a more intelligent search strategy is employed to create
a new executor for the failed operator. That way, the agent can discover ways to achieve a desired effect that would assist it in
solving the task.

The executor learning component employs reinforcement learning10 [53], with a reward function encoding the failed operator’s
desired effects. A new operator is then created with preconditions derived from the state description where the failure occurred
and effects identical to the failed operator. The learned policy is used as the new operator’s executor, and the agent can use it to
reach a state from which it can plan and complete the task. The algorithm used, called RAPid-learn [16], uses knowledge-guided
exploration informed by the novelty. The component receives symbolic state descriptions 𝑠 ∈  and novelty descriptions  from the
goal manager and temporarily guides the agent’s behavior to explore the environment.

9 The Preconditions can be ordered in many ways. For instance, they can be ordered by their frequency in known operators or using domain-specific heuristics.
The specific implementation details for our agent instantiation in the evaluation environment can be found in the appendix.
10 In RL, an agent interacts with its environment to achieve a goal specified by a reward function 𝑅. These problems are characterized using an episodic Markov

decision process (MDP)  = ⟨̃ , 𝐴̃, 𝑅, 𝜄⟩, where ̃ is a set of subsymbolic states, 𝐴̃ is a set of actions, a reward function 𝑅 translates state-action pairings to scalar
rewards. The agent aims to learn a policy 𝜋𝜇(𝑎̃|𝑠̃) (parameterized by 𝜇), maximizing its discounted return 𝐺𝑡 =

∑𝐾

𝑘=0 𝛾
𝑘𝑅𝑡+𝑘+1 until the end of the episode at timestep
11

𝐾 .

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

Algorithm 2 Executor learner (𝑇 ,  , 𝜔𝑜, 𝑠𝑓) → 𝑥𝑛𝑒𝑤.

1: Inputs:

2: 𝑇 = ⟨Σ, 𝑠0, 𝑠𝑔⟩ ⊳ Symbolic Planning Task
3:  ⊳ Plan  = {𝑜1, 𝑜2, ..., 𝑜||}
4: 𝑁𝑒𝑝𝑠 ⊳ Number of episodes
5: 𝜂, 𝜔𝑜, ̃𝑠𝑓
6: Procedure:

7: 𝛾(𝑠): initiation indicator ⊳ computed from 𝑠𝑓
8: 𝛽(𝑠): termination indicator ⊳ computed from 𝜔𝑜

9: Construct MDP  = ⟨̃ , ̃, 𝑅, 𝛾⟩ using 𝑇
10: for 𝑁𝑒𝑝𝑠 episodes do

11: 𝜋new
𝑜

←Train(, 𝑇 , 𝛽) ⊳ Train in 
12: if success(𝜋𝑜

𝜇
, 𝑇) > 𝜂 then

13: 𝜒new←⟨𝛾, 𝜋𝑜
𝜇
, 𝛽⟩ return 𝜒new

14: end if

15: end for

16: return failure

Policy learning for failed executors. The procedure for learning a new executor is described in Algorithm 2. Consider a plan  which
fails during the execution of an executor 𝜒𝑜 ∈  of an operator 𝑜. Assuming prior accommodation strategies failed, the learner
is invoked to learn a new policy 𝜋𝑜

𝜇
parameterized by 𝜇 to replace the policy of the executor 𝜒𝑜. First, two indicator functions

𝛾, 𝛽 are defined over symbolic descriptions  to indicate whether a given state 𝑠 is an acceptable initial or final state for the
policy (Algorithm 2 lines 7 and 8). Then, an MDP  can be defined with a reward function 𝑅 (Line 9) that provides a positive
reward when the agent reaches states that satisfy the effects 𝜔𝑜 of the failed operator 𝑜, and from which a successful executable
plan to the goal state exists.11 The policy is represented with a neural network that accepts 𝑠̃ ∈ ̃ , which is a domain-dependent
representation of the symbolic state description 𝑠.12 The policy 𝜋𝑜

𝜇
is trained by repeated interaction with the environment through

reinforcement learning until it achieves a predefined success rate (line 12).

Knowledge-guided exploration of novelties. An important feature of the executor learner is its knowledge-guided exploration strategy.
Using a description of novelties  , the exploration strategy of the RL learner is biased towards states and actions that are related to
the novelty.13 For instance, if the presence of a novel object is detected in the environment, the RL learner may be encouraged to
explore actions on that object. The knowledge-guided exploration improves the efficiency of exploration and makes the plan recovery
process easier. Once a new policy 𝜋𝑜

𝜇
for the executor 𝜒𝑜 is learned, the resulting operator is stored in the 𝐾𝐵. The parameters of the

policy 𝜇 are stored in  and retrieved when 𝜒𝑜 is executed.

5. Comprehensive evaluation

We conducted comprehensive evaluation experiments of the proposed novelty-aware architecture framework discussed in Sec-
tion 3, evaluating core components of the framework as well as integrated agents. The details of the agent implementation, the
simulation setup, and the hardware used for the evaluations can be found in the Appendix.

We start with a description of the two evaluation simulations followed by an overview of the experimental methodology and the
evaluation results. Overall, evaluations were performed in multiple trials where the agent had to perform the crafting task in different
random environmental settings (with different numbers of objects, etc.) divided into two phases: an initial “pre-novelty” phase (i.e.,
a varying initial number of trials with only known entities and dynamics) and a “post-novelty” phase (i.e., a set of trials where
something novel to the agent was introduced in all trials). The agent’s knowledge repository  was initialized with the information
required to not only solve the task, but anticipate the outcome of every interaction in “pre-novelty” environments. The agent needed
to modify and augment its knowledge for most “post-novelty” environments to be able to solve the task.

5.1. Evaluation setting

We used the Polycraft World domain [19] as a partially observable, multi-agent environment for the agent evaluations. Polycraft
World is a “Minecraft mod” consisting of a multi-agent (cooperative and adversarial) turn-taking grid-world game where an agent
competes with actors for resources to perform various crafting tasks. To accomplish a task like crafting a pogostick, an agent must
explore the environment to perform a series of sub-tasks that involve collecting and crafting the needed materials for constructing a
pogostick. Sub-tasks include:

11 Each time the agent satisfies the effects of the failed operator, the task planner is called to produce and execute a plan to reach the goal state. If the plan is
executed successfully, a positive reward is given.
12 𝑠̃ can take any form depending on the domain in question, such as a vector, graph, text, etc.
12

13 Further details on knowledge-guided exploration are available in the original publication of RAPid-Learn [16].

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

Fig. 5. Snapshot of the evaluation environments. Left: Novelgridworlds, Right: Polycraft.

• mining trees, diamond, and platinum,
• trading with trader actors,
• crafting intermediate objects, including a tree tap,
• placing tree tap on a tree and collecting rubber from it,
• collecting a key from a chest,
• opening a door and navigating to another room to find a safe,
• unlocking a safe and collecting items from it,
• crafting a pogostick.

The agent can execute movement commands (turn, walk, and teleport), interaction commands (select-item, use, break-block, craft,
collect, place, delete, trade, and interact), and sensing commands to make observations of the world state, including the direction
the agent is facing, inventory items, and locations of every object and actor in the room occupied by the agent.

For the particular Polycraft World domain used here (shown in Fig. 5 right), each trial instantiates the environment with a random
configuration that includes two to three rooms of varying sizes, one rival pogostick building actor (“pogoist”), two trader actors, and
resources in the environment (e.g., trees, platinum blocks, diamond ore, a safe containing diamonds, a crafting table, and a chest
containing a key). The rival pogoist actor is competing for resources, whereas the trader actors, when interacted with, offer recipes
for possible trades (e.g., 18 diamonds for one platinum block) and will trade with the agent if it has the requisite materials.

The agent starts each trial with an iron-axe in its inventory, which must be equipped to mine diamond ore and platinum blocks,
and only perceives information within the room it is currently in.

We used ten broad categories of novelties as shown in Table 1.14 In total, evaluations include 288 novelties from the 10 categories,
of which 216 were known during the development of the agent. Each novelty scenario is associated with three novelty tournaments,
and each tournament is composed of 50 task instances (i.e., episodes) where the first 5-20 episodes (a random number 𝑛 is selected
between 5 to 20) do not contain novelty (i.e., pre-novelty phase) and the subsequent 30-45 episodes (i.e., post-novelty phase) contain
the novelty being evaluated. In addition to the novelty tournaments, three no-novelty tournaments are included in the evaluation,
each consisting of 50 unique no-novelty task episodes. In each tournament, the agent receives a positive reward for completing the
task (e.g., obtaining a pogostick), and every action the agent takes has an associated negative cost. A cumulative score for the agent’s
performance is calculated by subtracting the negative cost assigned per action from the positive reward assigned for completing the
task. The agent is awarded a score of zero in the episodes where it fails to achieve the task. The episode in which the agent reported
novelty was also recorded. For comparison, the evaluation team used a non-novelty aware fast-forward planner agent otherwise
unrelated to the evaluated agent to generate standard performance scores for the pogostick task. The non-novelty aware control
agent achieved scores within 15% of the evaluated agent scores on pre-novelty episodes and had significantly decreased performance
in post-novelty episodes.

Metrics for tournament-based evaluations. To evaluate our agent in tournament-based evaluations in the Polycraft domain, we define
metrics to measure its novelty detection and novelty accommodation performance. The metrics are defined as follows:

• False Negatives (𝐹𝑁𝐶𝐷𝑇): How many episodes on average after novelty has been introduced, does the agent fail to report
novelty? A perfect score of 0 is obtained if novelty is reported in the first post-novelty episode.

• Correctly Detected Trials (CDT%): Boolean for each trial. True for every trial where the agent i) reports novelty after novelty has
been introduced and ii) does not report novelty before novelty is introduced.

• False Positives (FP%): Boolean for each trial. True for every trial where the agent reports novelty before novelty is introduced.

14 This categorization should not be confused with the novelty types described in Section 3. Moreover, this categorization is not necessarily exclusive as the novelties
may generally belong to one or more of these categories. Nevertheless, to better motivate the discussion for novelty handling capabilities of an agent, we categorize
13

them.

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

Table 1

Descriptions of the novelties categories with examples used for the comprehensive evaluation in Polycraft.

Category Description Example

Object A new entity in the environment that does not have goal-oriented
behavior.

A new block type ‘fence’ is added that obstructs access to trees

Attribute Changes to the properties of previously-known entities in the
environment.

A new tree variant ‘birch’ is added that can not produce rubber with
a tree tap

Representation Changes to how previously-known entities are specified in sensory
percepts.

Item names are partially scrambled

Actor A new entity in the environment that does have goal-oriented
behavior.

A new entity ‘thief’ is added that steals items from your inventory

Action A new goal-oriented behavior of a previously-known environmental
agent.

The Pogoist agent now trades items instead of the Traders)

Relation A new static property of the relationships between multiple entities. Traders now spawn in different areas of the arena)
Interaction A new dynamic property of behaviors or actions that impacts multiple

entities.
Traders are now ‘busy’ sometimes when the player interacts with
them

Environment A new element of an open-world space that may impact the entire
task space and is independent of a specific entity.

The new element ‘wind’ is present in various regions of the arena
and alters player movement

Goal A new objective of goal-oriented behavior for an environmental actor. The Pogoist changes the resources it is seeking
Event A new state change or series of state changes that are not each the

result of volitional action by an agent/actor.
Trees rot and regrow over time

• Novelty Reaction Performance (NRP%): Average post-novelty task score for the agent divided by the average pre-novelty task
score of the non-novelty aware control agent.

• Goal Achieved (GA%): Percentage of post-novelty tasks in each tournament where the agent achieved the goal.

We also use a previously developed “openAI gym” environment called Novelgridworlds [17] for component evaluations (shown in
Fig. 5 left). Specifically, we implemented the same pogostick task in Novelgridworlds and developed several novelties for algorithm
prototyping, internal evaluations, and showcasing important characteristics of our cognitive architecture. The need for a separate
evaluation platform was due to the need for a tight development loop between designing novelties the agent could not handle
and, subsequently, improving the agent’s algorithms to master them (which was not possible in Polycraft). More importantly, many
novelties designed by the evaluation team in Polycraft were purposely concealed and not accessible to the architecture development
team in an effort to avoid any subconscious biases being introduced into the algorithm developments. Additional standard metrics
are used for component-wise evaluations.

5.2. Component-wise evaluation

A component-wise evaluation is performed for various components of the architecture to comprehensively evaluate important
aspects of the architecture. The VISION MODEL is evaluated on its ability to detect novelties in images of the Polycraft environment
in a two-stage evaluation. The AGENT MODEL is evaluated in Polycraft shared novelties that involve actors with changed behavior.
The EXECUTOR LEARNER is also evaluated separately in the NovelGridworlds environment to evaluate its efficiency in recovering
from execution failures.

5.2.1. Vision model evaluation

Vision model training. We train our vision models on a custom open-access dataset called NovelCraft [13], which contains over
10,000 256 × 256 pixel RGB images from our agent’s perspective as it solves the pogostick building challenge within the Polycraft
world. Rather than apply encoder and decoder to the entire image, we instead process patches of size 32 × 32 pixels. Patch-based
autoencoders are faster and easier to train and maintain, while being at least as accurate as whole-image models in our tests [13].
For encoder and decoder, we use the specific network architectures in Abati et al. [1], with latent code size of 100. Hyperparameter
search for architectural choices, learning rates, etc. was informed by NovelCraft’s separately available validation set of images.
Further details on training and implementation are available in the appendix and in Feeney et al. [13].

Two-round evaluation. Given our trained model, two distinct rounds of evaluation were then performed. First, an initial known-

novelty evaluation was performed on the test set of the NovelCraft dataset [13]. While this is a predefined split whose images and
novelties are distinct from the training set, the possible novelties in this test set were known to our team during model design, so we
call this a “known-novelty” evaluation. There are 21 normal episodes and 440 novel episodes, where new novel object types, such as
JukeBox or TNT, are inserted into the Polycraft environment. In total, 51 different object type novelties are used (for a full listing,
see Appendix A of [13]).

Next, an additional unknown-novelty evaluation was conducted using a set of Polycraft novelties designed by an external team. We
had no prior knowledge of these novelties during model development, which makes for a more robust assessment. This evaluation
grouped 50 episodes into tournaments, with a set of normal episodes followed by a set of novel episodes depicting the same novelty.
The transition from normal episodes to novel episodes occurs randomly, but there are 15 normal episodes on average. Tournaments
14

for 9 different visual novelties were conducted with an additional tournament composed of 50 normal episodes. Three tournaments

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

Fig. 6. Input and output example from the patch-based autoencoder of the agent’s VISION MODEL. The image 𝑋 obtained through the DOMAIN INTERFACE (left) is
segmented into patches and reconstructed by the autoencoder (middle). The reconstruction error (right) is used as a signal to detect novelties, with higher values
(lighter) indicating regions more likely to contain unknown visual elements.

Table 2

Visual novelty detection results on the known-novelty test set (from
NovelCraft) and the unknown-novelty test set (content unknown to
us during model development). We report performance at different
thresholding choices selected on the known set. Mismatch between
the novelties depicted in the evaluations results in the model yield-
ing a lower than expected precision (PPV) on the unknown set while
maintaining reasonable true positive rate (TPR).

Evaluation TPR TNR PPV

Known Set (TPR 95%) 95.0 31.3 88.7
Known Set (PPV 95%) 66.5 80.6 95.0
Unknown Set (PPV 95%) 84.9 70.5 85.1

were randomly generated for each setting, resulting in 30 tournaments and 1,500 episodes total. In both evaluations, the model
observes all of the episode’s image patches then outputs a single real-valued novelty score for the whole episode. This novelty score
is the model’s prediction of the likelihood of a novelty appearing anywhere in the episode. For simplicity, the model computes
a per-patch novelty score for each image patch in the episode using the reconstruction error signal from the deep autoencoder,
then reports the maximum score over all frames. Fig. 6 showcases an example of its operation. Future work could pursue more
sophisticated aggregation strategies across frames.

Evaluation criteria. The model is evaluated on the true positive rate (TPR, aka recall), the true negative rate (TNR), and the positive
predictive value (PPV, aka precision) of the per-episode visual novelty detector. Given the count of true and false positives (TP and
FP) as well as true and false negatives (TN and FN) the metrics are defined as:

TPR = TP
TP + FN

, TNR = TN
TN + FP

, PPV = TP
TP + FP

Evaluating these rates at chosen operating thresholds is more informative than area-under-the-curve metrics when making binary
judgments of normal or novel [13]. The known-novelty evaluation examines two possible ways to select a threshold. First, the
novelty score threshold is chosen to achieve 95% TPR on the NovelCraft test set to examine performance when avoiding false
negatives matters most. Second, the novelty score threshold is chosen to achieve 95% PPV to examine when avoiding false positives
matters most. The unknown-novelty evaluation uses the latter threshold to prioritize preventing false positives on the unseen set of
novelties.

Results. Table 2 quantifies the visual novelty detection performance. The known-novelty evaluations show that enforcing a TPR of
95% maintains a good PPV but results in a low TNR. A much better performance in terms of TNR is achieved by enforcing 95%
PPV while the TPR decreases in this regime. Reusing the same 95% PPV threshold in the unknown-novelty evaluation performs well
despite having a 85.1% PPV. The TPR is increased by 14.4 percentage points with only a 10.1 percentage point decrease in TNR.

The results show that focusing on high TPR values comes at the cost of a low TNR - although many novel episodes are detected as
novel, comparably many normal episodes are considered to be novel too. By emphasizing high PPV, the performance in terms of TNR
is significantly improved while a similar TPR is maintained. Compared to the high TPR regime, less normal episodes are reported as
novel but some of the novel episodes are missed.

The threshold for the high PPV regime in the unknown-novelty evaluations is the same as in the known-novelty evaluation.
However, PPV and TNR are decreased while TPR is increased. This suggests that novelties in the unknown-novelty evaluation are
easier to detect than object novelties and that the unknown-novelty evaluation includes more normal episodes depicting the normal
15

environment in a way that was not present to a great extent in the validation set.

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

Table 3

Tournament-wide (left) and episodic (right) AGENT MODEL

evaluations using only detections from the AGENT MODEL on
actor-related novelties.

Tournament-wide Episodic

Metric Value Metric Value

CDT% 64.71% F1 0.728

𝐹𝑁𝐶𝐷𝑇 0.36 Precision 0.997
FP% 2.94 Recall 0.573

Discussion. The results demonstrate some of the challenges when applying visual novelty detection methods for automated binary

novelty decisions - a threshold must be chosen based on available validation data. There is a tradeoff between prioritizing avoiding
false negatives and avoiding false positives and a threshold might need to be chosen specifically for the given task [13]. Furthermore
one must keep in mind that results achieved on the validation set might differ from the expected performance on a test set if the sets
deviate “too much” from another. Detecting novelties in Polycraft is a challenging problem - novel episodes hardly ever show the
novelty in a focused, large and central manner. A novel input image shows a complex scene in which the novelty might be depicted
on only a very small fraction of the scene’s content while large image regions are occupied by normal objects, agents and textures.
The novelty can be far in the back of a scene or partially occluded. However, for open-world applications, the detection of novelties
in these scene-based scenarios is crucial.

In future work, novelty descriptions produced by the VISION MODEL could further inform novelty exploration strategies to verify
suspected novelty. For instance, potential novelties, identified by increased pixel-level image reconstruction errors, could be examined
in more detail by including localization information in the novelty descriptions which the agent could use to better focus exploration
efforts.

5.2.2. Agent model evaluation

Using the novelties shared in the Polycraft environment, the AGENT MODEL’s detection capabilities of actor-related novelties
are evaluated. From the total of 36 novelties shared, 7 are selected that involve known actors that exhibit altered behavior. These
novelties originate from the Actions and Goals15 categories. Each environment is associated with 9 tournaments and the novelties
are spread over 3 sub-variants, yielding a total of 63 test tournaments. Each tournament is run for 30 games, yielding a roughly equal
split between pre- and post-novelty episodes in each tournament.

Evaluation criteria. The novelty detection performance of the AGENT MODEL alone is evaluated using both the tournament-wide
detection metrics on the episode-level standard anomaly detection metrics. Further analysis reveals strengths and weaknesses of the
agent model which are discussed using two examples of novelty from the Polycraft environment.

Model training. The AGENT MODEL is trained and validated on trajectories generated by randomly repositioning objects in the initial
states of the 100 no-novelty environment configurations provided in the Polycraft repository. In total, 1000 trajectories are generated
and 80% of the trajectory steps are used for training and the remaining 20% for validation and threshold calculation. AGENT MODEL

is evaluated by running the architecture on the novel environment configurations and recording only the novelties detected by the
AGENT MODEL. Additional implementation details are available in the appendix.

Tournament-wide results. Table 3 (left) quantifies the novelty detection performance of the AGENT MODEL in tournament-wide
metrics. The AGENT MODEL is able to correctly identify novel trials in the majority of the novelties. It is consistent in its detections,
only producing a small number of false negatives in correctly detected trials. Additionally, its tournament false positive rate is low,
which makes it a viable addition to the symbolic novelty detection system which tends to produce very few false positives.

Episode-level results. Table 3 (right) shows the episodic evaluation of the AGENT MODEL detector. As suggested by the tournament-
wide evaluation, the agent has strong performance and is generally cautious, producing a very small number of false positives as
evident from its high precision score. However, its weaker recall indicates that there are many episodes where the AGENT MODEL

fails to detect novelty. As indicated by the prior analysis those cases seem to be concentrated in environments where interaction is
required for the novelty to be made apparent. This suggests that the architecture would benefit from tighter integration of its AGENT
MODEL and its planner and knowledge base.

Discussion. A more thorough investigation of the results reveals that the AGENT MODEL exhibits high variability across different
novelties, with nearly perfect detection performance in some novel environments and worse performance in others. One way to
distinguish which novelties the AGENT MODEL can reliably detect is whether the behavior change of actors is dependent on interaction

15 The actors category typically involves actors of novel types, detection of which is handled with symbolic inference as they are included in the symbolic state
16

descriptions.

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

Table 4

Component-wise evaluation results comparing the GA% of the Base agent and
the Base+EXECUTOR LEARNER agent on the four novelty scenarios evaluated in
Novelgridworlds.

Novelty\Agent Base GA% Base+EXECUTOR LEARNER GA%

This is just random... 2.0 21.0
Convince me. 0.00 59.0
Sapling can’t grow here! 5.0 10.0
Show me your card first. 0.00 21.0

with the agent. Novelties that arise from a change in actor behavior independent from the agent’s actions are consistently detected
by the AGENT MODEL, whereas novelties that require interactions to manifest are more difficult to detect.

One example of a novelty type in Polycraft that the AGENT MODEL consistently detects, involves a pogoist-type actor altering its
resource-gathering strategy. This change is detected by the AGENT MODEL as a set of actions that are very unlikely under the learned
policy for that agent type. As a result, the AGENT MODEL detects the novelty and produces a description indicating which performed
actions are highly unlikely. In this example, the AGENT MODEL reports that the unlikely action taken by the actor involves collecting
the “diamond” resource, which is essential to task completion. As a result, the GOAL MANAGER generates subgoals to gather that
resource with high priority, to ensure the agent can continue to solve the task.

A failure case for the AGENT MODEL in Polycraft is a variant of a novelty that gives the pogoist-type actor the ability to trade
resources with our agent much like the no-novelty behavior of the “Trader”-type agents. One variant of the novelty involves the actor
changing its policy and acting exactly like the no-novelty “Trader” actors. That change is quickly detected by the AGENT MODEL as
a set of unlikely actions. Additionally, using the actor type classifier, the AGENT MODEL infers that the pogoist actor is acting like
a trader. That novelty can be submitted to the 𝐾𝐵 and accommodation strategies can be applied. However, a different variant of
this novelty involves the actor acting as expected most of the time, unless the agent interacts with it. In that case, it is available
for trading as before. This novelty is not detectable without attempting to interact with the actor, and therefore, the AGENT MODEL

never detects this variant of the novelty.

5.2.3. Executor learner evaluations

To showcase the effectiveness of the EXECUTOR LEARNER component, we evaluate it on four novelty scenarios. The evaluations
were performed using a similar experimental setup described in Section 5.3.1 with a pre and post-novelty scenario. We inject
novelties into the environment and measure the task performance capability of the agents. Specifically, we compare the performance
of the Base+EXECUTOR LEARNER with the Base agent, in which the Base agent consists of the symbolic inference components, and the
Base+EXECUTOR LEARNER consists of the symbolic inference and the EXECUTOR LEARNER. The rationale is to showcase the usefulness
of an rl-based learner to accommodate novelties, especially when extensive symbolic inference strategies (described in Section 4.3.1)
fail to accommodate it. We further describe the experimental setup and evaluation criteria and discuss the results.

We design the novelty scenario for the internal evaluation in the Novelgridworlds environment as it gives us more flexibility to
implement specific scenarios we want to analyze. These novelties are designed to showcase the benefits of using a reinforcement-
learning-based learner16 - in particular stochasticity, dynamic behavior, spatial and temporal relations. A description of all novelty
scenarios used for this evaluation is available in the appendix.

Evaluation metrics. Both agent configurations (Base and Base+EXECUTOR LEARNER) were evaluated on the above four novelty
categories. Each novelty tournament comprised 50 episodes. Each episode was limited to a maximum of 600 time steps or 15
minutes. We record the percentage of times each agent successfully achieved the goal, i.e., crafting a pogostick (The GA% metric
described earlier in the text). Each novelty tournament was run for 10 independent trials, and the GA% was averaged across these 10
independent trials. It should be noted that the EXECUTOR LEARNER performed online exploration and learning during the evaluations
and was randomly initialized for each run. For the scope of this work, we do not evaluate the robustness of the policy in this
evaluation.17 We showcase the results in Table 4.

Discussion. The results of the component-wise analysis (Table 4) show that the Base+EXECUTOR LEARNER agent performs better
overall than the Base agent in accommodating to novelties. Adding an EXECUTOR LEARNER component to the base architecture helps
the agent to be more adaptive and learn policies that the symbolic explorer cannot find. The Base+EXECUTOR LEARNER is better at
capturing complex dynamics where the Base agent alone completely fails in the novelty scenarios described above. We detail each
novelty scenario to understand how the EXECUTOR LEARNER aids learning to accommodate the novelties.

16 The implemented novelties cannot be solved by another module in the architecture alone. We ensure that the EXECUTOR LEARNER is needed to accommodate
these novelty scenarios. It is unknown whether any of these or similar novelties were included in the Systemic evaluation.
17 For thorough evaluation details and results on the robustness of policies learned with this algorithm please refer to our original publication of the algorithm used
17

RAPid-Learn [16].

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

Table 5

Overall results comparing the five configurations of the agents in the systemic evaluation.

Agent 𝐹𝑁𝐶𝐷𝑇 CDT% FP% NRP% GA%

Base 0.69 83.3 3.2 73.5 64.4
Base+AGENT MODEL 0.58 86.1 6.1 72.4 64.0
Base+EXECUTOR LEARNER 0.76 84.7 2.3 74.2 66.6

Base + AGENT MODEL + EXECUTOR LEARNER 0.39 88.7 1.6 68.1 61.9
VISION MODEL 3.44 56.6 34.1 – –

5.3. Systemic evaluation

Systemic evaluations were performed across the entire Polycraft novelty set to showcase the integrated capabilities of the agent.
We evaluate three novelty-aware agent configurations in all 864 novelty tournaments18 and three pre-novelty tournaments. These
evaluations utilize a novelty firewall, where novelties outside the shared set of novelty tournaments were concealed from the algo-
rithm and architecture team and evaluated by a separate evaluation team.

5.3.1. Evaluation methodology

The systemic evaluation focuses on the measurement of novelty detection and accommodation performance across all novelty
categories using different configurations of the agent architecture. Three evaluations are presented on different configurations of the
agent architecture.

Base agent. The first agent configuration we evaluated includes the first-order inference components and the novelty exploration
component except the EXECUTOR LEARNER. This configuration aims to evaluate the agent’s performance using only symbolic reason-
ing, without any learning-based components.

Base agent+AGENT MODEL. The second configuration we evaluate augments the base agent with the AGENT MODEL, which aims to
improve the agent’s novelty detection performance, especially in actor-related novelties.

Base agent+EXECUTOR LEARNER. The third configuration we evaluate augments the base agent with the EXECUTOR LEARNER, which
aims to improve the agent’s ability to recover from execution failures unresolved by OPERATOR DISCOVERY. It should be noted that
the EXECUTOR LEARNER in this agent is used only after all other exploration strategies fail to accommodate novelty within a preset
time-limit.

Base agent + AGENT MODEL + EXECUTOR LEARNER We also evaluate the combined version of all the models with the base agent to
demonstrate the capability of our architecture in terms of novelty detection and novelty accommodation.

Vision agent We include a vision-only agent to demonstrate the challenge of performing novelty detection through only visual
perception. In this configuration, the default version of the Base agent is used, but no novelties discovered through symbolic inference
are reported. However, since all accommodation strategies rely on detailed symbolic descriptions of novelty that the vision model
cannot produce, we only evaluate the vision agent on novelty detection using the 𝐹𝑁𝐶𝐷𝑇 , CDT%, and FP% metrics.

Evaluation criteria. The evaluation of the integrated agent is performed using the tournament-wide metrics defined earlier. Specifi-
cally, we evaluate the novelty detection performance of the agent using CDT%, FP%, and 𝐹𝑁𝐶𝐷𝑇 , and the novelty accommodations
performance using NRP% and GA%. Overall results are computed by averaging all tournaments. Additionally, per-category results
are obtained by averaging tournaments within the same category. Due to the high computational cost of the systemic evaluations,
we only run a single set of experiments per agent configuration.

5.3.2. Results & discussion

Table 5 quantifies the novelty handling performance of each of the five agent variants in the Polycraft environment. The base
+AGENT MODEL and base +AGENT MODEL + EXECUTOR LEARNER agents outperform the other variants in 𝐹𝑁𝐶𝐷𝑇 and CDT%,
which indicates increased novelty detection capability but with higher variation in performance, which is attributed to the AGENT
MODEL being the only learning based novelty-detection component in those systems. The base+EXECUTOR LEARNER agent performs
best in NRP% and GA%, which indicates the agent with an rl-based learner has better novelty accommodation capability. While the
VISION MODEL demonstrates potential to improve the novelty detection capabilities of the agent, its evaluations suggest that further
effort is required to bring the false positive rate to a level that would not be detrimental to the agent’s performance in the pogostick
task in Polycraft.
18

18 288 novelties with 3 tournaments each.

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

Table 6

Detailed systemic evaluation of Base agent on all the novelty categories.

Metric 𝐹𝑁𝐶𝐷𝑇 CDT% FP% NRP% GA%

Objects 0.00 95.9 1.6 95.8 82.9
Attributes 0.51 86.7 3.5 63.2 58.5
Representations 0.18 85.0 2.8 74.8 66.7
Actors 0.00 92.3 7.7 63.3 52.6
Actions 3.76 61.1 0.0 103.0 94.4
Relations 0.00 96.3 3.7 70.7 48.4
Interactions 0.06 64.2 1.9 71.7 65.4
Environments 0.10 92.2 4.4 44.2 41.1
Goals 3.21 70.0 4.4 99.1 81.2
Events 1.12 77.3 2.3 51.0 48.8

Table 7

Detailed systemic evaluation of Base+AGENT MODEL agent on all the
novelty categories.

Metric 𝐹𝑁𝐶𝐷𝑇 CDT% FP% NRP% GA%

Objects 0.00 88.9 8.7 91.5 82.3
Attributes 0.65 85.4 6.9 66.3 59.0
Representations 0.65 84.3 4.6 73.3 66.1
Actors 0 96.3 3.7 56.9 49.6
Actions 1.23 74.1 7.4 99.5 94.6
Relations 0.00 90.7 9.3 66.0 47.0
Interactions 0.24 68.5 3.7 68.2 62.6
Environments 0.48 95.5 4.5 42.7 40.9
Goals 0.13 95.6 4.4 104 82.7
Events 2.44 77.3 5.7 49.0 47.5

It should be noted the NRP metric may disadvantage reinforcement-learning agents as it punishes extended exploration in the
environment.19 The EXECUTOR LEARNER achieves a measurable improvement over the other two configurations in NRP% despite
this, indicating a positive influence on novelty accommodation. A detailed analysis of the evaluation (Table 8) reveals that the
EXECUTOR LEARNER improves the exploration capability of the agent in various novelty categories. Table 10 showcases examples
of the accommodation strategies learned by EXECUTOR LEARNER in some novelty categories. We discuss these examples in detail in
Section 5.3.3.

Table 6 details the systemic evaluation results of the base agent configuration by novelty category. The base agent performs
strongly in novelty handling, though it is weaker than the other configurations.

Regarding novelty detection performance, the base agent seems to be weakest on the action, interaction, and goal novelties,
receiving CDT% scores of 61.1, 64.2, and 70, respectively. Action and goal novelties also show high 𝐹𝑁𝐶𝐷𝑇 , which indicates that
the base agent is not very consistent in detecting those novelties.

Table 7 details the systemic evaluation results of the Base+AGENT MODEL configuration by novelty category. The Base+AGENT
MODEL performs best in CDT% and 𝐹𝑁𝐶𝐷𝑇 out of the three configurations but has the highest FP%. In the three pre-novelty trials
ran, the agent model produced false positives in two out of three tournaments in a total of 3 out of 150 episodes. This per-episode
false positive rate is consistent with our component-wise evaluation results and indicates that even a comparatively low false positive
rate of about 2-3% can be magnified in tournament-wide evaluations. The additional false positives also explain the slight NRP% and
GA% decrease, as they may force the agent to explore unnecessarily. It should be noted that the agent configurations that include
AGENT MODEL exhibit higher variation in detection performance, particularly in false positive rate, than the agent configurations that
only use symbolic inference. This is due to small random effects in the environment (e.g. where broken objects fall to the ground)
that may trigger false positive detections from the neural models. Still, both configurations of the agent with AGENT MODEL overall
outperform the other agents in novelty detection.

The Base+AGENT MODEL configuration performs especially well in novelty detection of action and goal novelties, increasing
CDT% by 13% and 25.6%, respectively. It also significantly decreases 𝐹𝑁𝐶𝐷𝑇 , decreasing the average time-to-detection to 0-2
episodes for both categories. A smaller improvement is also seen in CDT% for the interactions and environments novelty categories.
This indicates that the AGENT MODEL is able to supplement the base agent’s novelty detection capability in actor-related novelties in
which modeling of actor behavior is required.

A surprising result is that the combined base+AGENT MODEL +EXECUTOR LEARNER agent performs worse than the other agents
in the novelty accommodation metrics NRP% and GA%. Table 9 indicates that this is consistent across novelty categories and not
concentrated on one. We attribute this to unforeseen interactions between the additional components in that configuration: When

19 Extended exploration accumulates negative scores because the agent executes many actions in the environment. Therefore, reinforcement learners, which tend to
19

require prolonged exploration to learn policies, are disadvantaged by this metric as possible gains in task completion performance can be masked.

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

Table 8

Detailed systemic evaluation of Base+EXECUTOR LEARNER agent on all
the novelty categories.

Metric 𝐹𝑁𝐶𝐷𝑇 CDT% FP% NRP% GA%

Objects 0.00 95.2 2.4 92.5 82.0
Attributes 0.48 88.1 2.8 62.9 61.2
Representations 0.64 86.0 3.7 75.9 68.6
Actors 0.00 98.1 1.9 64.4 54.5
Actions 4.86 64.8 1.9 101.8 96.5
Relations 0.00 98.1 1.9 70.2 49.3
Interactions 0.06 64.8 1.9 71.3 64.6
Environments 0.09 94.4 2.2 42.2 40.5
Goals 2.82 67.8 1.1 106.5 86.5
Events 1.23 80.7 2.3 55.8 56.7

Table 9

Detailed systemic evaluation of Base + AGENT MODEL + EXECUTOR
LEARNER agent on all the novelty categories.

Metric 𝐹𝑁𝐶𝐷𝑇 CDT% FP% NRP% GA%

Objects 0.00 95.2 1.6 92.5 80.1
Attributes 0.95 91 1.4 63.0 57.6
Representations 0.13 85.2 0.9 74.7 66.7
Actors 0 98.1 1.9 53.5 47.8
Actions 1.93 77.8 0.0 91.6 86.8
Relations 0.00 96.3 3.7 46.8 39.8
Interactions 0.06 66.0 1.9 72.9 64.7
Environments 0.10 93.3 3.3 32.2 39.9
Goals 0.21 98.9 1.1 101.2 82.1
Events 0.78 77.5 0.0 40.6 41.5

Table 10

Description of some novelties in which the Base+EXECUTOR LEARNER agent performs better than the base agent on the systemic evaluation conducted on Polycraft.

Category Description Adaptation

Attribute Chest objects contain valuable task items accessible with
break or collect.

EXECUTOR LEARNER learns to break and collect from multiple chests
on the ground to get the necessary items.

Attribute Birch tree types fail to produce rubber. EXECUTOR LEARNER learns to remove objects that result in operator
failure.

Action Traders plant new trees around themselves. EXECUTOR LEARNER learns to handle actions from Actors that
previously didn’t perform certain actions.

Concealed Concealed EXECUTOR LEARNER performed better on some concealed novelties.

the EXECUTOR LEARNER explores the environment, this may induce changes to the environment that in turn may cause changes in
the behavior of other agents. As a result, the AGENT MODEL may detect novelty, which in turn may lead the agent to further explore
the detected novelties, hurting its task performance.

5.3.3. Examples

Several cases are identified from the systemic evaluations conducted on the Polycraft environment to demonstrate the architec-
ture’s strengths and weaknesses in novelty handling. Below is a detailed walk-through of how the architecture reacted to each novelty
scenario. Additional examples are available in the appendix.

Must break tree tap to get rubber. Within this novelty scenario, the operator to collect rubber from a tree tap does not work. The agent
must now break the tree tap to obtain rubber. This novelty belongs to the Attribute category. The base agent sometimes succeeds at
solving this novelty and sometimes fails. These two cases are outlined below.

Explanation. The agent attempts to collect rubber from a tree tap, but the operator fails with total effect failure, prompting
the NOVELTY EXPLORATION component to enter a failed operator effects recovery policy. The failed operator is represented in
the agent’s knowledge base as the operator collect(tree tap,tree) where (tree) is the tree that the tree tap is placed onto. Our current
implementation of the failed operator effects policy only utilizes the Operator Variation strategy on operators with a single parameter,
which means that the strategy is not executed in this case. As discussed in the appendix, this is due to the large search space resulting
from considering operators with multiple parameters. As a result, the operator variation break(tree tap, tree) is never attempted, and
ultimately the agent is unable to solve the task via any other strategies, opting to give up.

The agent is successful in the rare occasion in which the rival pogoist actor breaks the tree holding the tree tap after the agent
20

has placed the tree tap on the tree, but before the agent has executed the “collect” operator. When the GOAL MANAGER attempts to

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

execute the “collect” operator, a precondition fails: nextTo(tree tap, tree), which represents the spatial relation of the tree tap to the
tree. This condition fails because the tree has been chopped down. As a result, the agent utilizes the precondition failure strategy, in
which the agent updates its knowledge base with the accurate state and replans. In the plan generated by the agent, it first breaks
the tree tap to obtain the tree tap item and takes it to another tree. Upon breaking the tree tap, it enters the effects failure recovery
policy when that action unexpectedly places rubber in the agent’s inventory. The agent updates its representation of the operator to
include acquiring rubber as an effect. Thus, the agent succeeds in accommodating the novelty due to the actions of the rival pogoist.20

Pogoist prioritizes diamond. The rival pogoist actor changes strategy to prioritize mining diamond ore, which means the agent will be
unable to mine any if it does not also prioritize diamond. This is categorized as a Goals novelty.

Explanation. Without the agent model added to the base architecture, our agent is able to solve this novelty relatively well
because the Task Planner prioritizes mining diamond ore. This is coincidental and not due to any intentional value placed on mining
diamond ore over any other action in the plan, so our base agent’s success in this novelty is an interesting example of successful
performance without explicit accommodation. Moreover, the symbolic inference does not even detect this as a novelty.

However, with the AGENT MODEL added on to the base architecture, our agent can successfully detect and intentionally accom-
modate the novelty. Each type of actor in the world (including pogoist) is linked to a model of behavior that is trained on non-novel
trials, as described in Section A.1. The pogoist breaking diamond ore so early in the episode is differentiated from the model of ex-
pected behavior, and therefore, the AGENT MODEL reports it as an unlikely action from the pogoist. The agent considers the ‘unlikely’
action to be a novelty and records this in its knowledge base. At the beginning of the next episode, the agent spends a little time
investigating any recorded novelty descriptions in Knowledge Discovery, including this action, which it does by copying the action
and mining the diamond. Thus novelty is detected, and the agent performs well by obtaining the ore early.21

Cannot collect rubber from Birch trees. A new species of birch tree, belonging to a new subtype of the tree object, is introduced to the
environment alongside the known oak trees. Rubber cannot be collected from the birch trees, only the oak trees. This is categorized
as an Attribute novelty.

Explanation. The base agent performs fairly inconsistently in this novelty, entirely dependent on whether the planner decides
to collect the rubber from an oak or a birch on any given trial, since the inability to collect rubber from birch trees is unknown
to the agent. When it tries to collect from a birch tree and fails, the agent attempts to repair the operator using the total effects
failure policy. The failed operator is collectFrom(tree tap,birch tree), and the operator that would provide success is collectFrom(tree
tap,oak tree). But as mentioned earlier, our current implementation of the Total Effects Failure policy only utilizes the operator
variation strategy on operators with a single parameter to avoid search space explosion, leading the agent to give up after trying
other unsuccessful policies.

However, the agent utilizing the EXECUTOR LEARNER manages to overcome this implementation compromise in our architecture.
Rather than giving up, when the agent utilizes the EXECUTOR LEARNER, to learn a surprising new policy to accommodate this
novelty. It prevents the failure from happening again by breaking all the birch trees in the environment and replanning. This forces
the symbolic task planner to collect rubber from oak trees for the rest of the trial because it doesn’t have the option to collect it from
anywhere else. This unexpected accommodation strategy showcases the flexibility of the EXECUTOR LEARNER in integrating with
the implementation of the TASK PLANNER. The learner’s reward function encourages reaching states from which the agent can plan,
which may yield different recovery policies based on the characteristics of a particular implementation of the architecture.

6. Related works

Open-world novelty detection and accommodation is an emerging direction in AI. Some researchers have already attempted
to address unprecedented experiences in the world, a process that often begins with the detection of novelty. One way to detect
anomalies is to use statistical techniques to detect visual novelties or anomalies in time-series data [37]. In particular, convolutional
neural networks (CNNs) trained as classifiers on normal classes can have their probabilistic outputs repurposed to compute a novelty
score for new images [35,30,32]. For example, a method named NDCC [8] first trains a classifier, then computes a novelty score
for a new image by computing the distance between that image and the closest normal class’s centroid in the learned feature space.
Other variants of neural network techniques for visual novelty detection include autoencoder-based approaches [1,27], Generative
Adversarial Networks (GANs, 18), and adversarial autoencoders based on GANs [49]. However, these techniques alone only allow
the detection of anomalies.

To make better inferences about new visual events, some researchers have proposed cognitive architectures. These architectures
are able to identify and locate unknown activities in video data in an open world, such as OW-TAL [61]. Others are also able to
analyze and generate explanations and theories, as well as revise and update beliefs [56]. Alternatively, attempts are made not
only to recognize new experiences but also to acquire additional knowledge about them. The CoTTA cognitive architecture [55]
explores relationships between topics and structural elements to capture similarities and provide a better semantic representation for
retrieval. Li et al. [33] present a cognitive architecture to understand visual scenes from a very sparse “tabula rasa” knowledge of
the world, and learn to automatically extract relevant information from the world using only unsupervised and RL techniques. These

20 A narrated video of our agent encountering this novelty can be viewed at the following link: https://www .youtube .com /watch ?v =ILgFudhi6i8.
21

21 A narrated video of our agent encountering this novelty can be viewed at the following link: https://www .youtube .com /watch ?v =EZOgBy9cDc4.

https://www.youtube.com/watch?v=ILgFudhi6i8
https://www.youtube.com/watch?v=EZOgBy9cDc4

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

cognitive architectures are able to extract new visual representations from the world, but they do not give the agent any capabilities
to understand how to plan and act when it encounters changes in the world.

Various aspects of planning and acting in non-stationary environments have been studied before (e.g. planning in the open world,
see 54), sometimes under the umbrella term “lifelong learning” and often using variants of deep reinforcement learning [26]. However,
re-planning approaches can not recover from obstructive novelties. Proposed solutions for continuous [2,31] and non-stationary [9]
learning are often plagued by catastrophic forgetting and difficulties in dealing with abrupt changes in the task environment, which
can completely block the learner’s ability to adapt and lead to permanent task failure.

Some work in the field of continual learning has shown performance stability despite repeated exposure to novelties [28]. In
reality, however, continual learning is neither designed to recognize novelties nor to adapt to a growing domain and would fail in the
open world. Lifelong learning methods with adaptive capabilities such as Meta Experience Replay [46] or powerplay [50], require task
traces from previous experiences for retraining to prevent forgetting. This is often unrealistic (e.g., with the limited computational
and memory capacity available to autonomous embodied systems such as robots) and sometimes not feasible (because of the time it
takes to relearn the system).

Some classical approaches to open-world inference are also relevant to novelty-capable agents. Methods based on Adaptive
Resonance Theory [60,51], non-monotonic logic [40,12] and growing neural gas networks [38,39] may form learning and reasoning
components of larger novelty-capable agents.

Several recent hybrid planning and learning approaches have shown how to take advantage of high-level planning representations
and reasoning methods while utilizing low-level policy-based learning approaches like RL [52,25,29,24]. Guan et al. [20] learn a
metacontroller over the learned skills by using the provided operators to acquire skills to access a variety of terminal states (also
called landmark states). However, these approaches do not consider open-world settings. Recent work on dynamic environment
accommodation is typically limited in several ways. Agents may receive dense rewards [5], or have extra symbolic knowledge about
a change when it appears [7,15,23].

Other efforts assume agents may face gradual changes [42,44] or plan-level novelties only [58]. On the other hand, Sarathy
et al. [48] used RL to accommodate changes caused by the introduction of novelties. By adapting existing and/or learned executors
for plan operators, they enabled the agent to find a successful path to the goal after novelty injection [16,36].

Some cognitive architectures explore learning to deal with changes in the world. FANS-RL [14] improves reinforcement learning
efficiency and stability in dynamic environments. However, FANS-RL is designed to respond to changes in environment dynamics
such as motor malfunctions or changing goals in the form changing reward functions, rather than sudden and novel changes (such as
prohibitive novelties) that may include new objects, properties, and relations. Muhammad et al. [41] propose an architecture capable
of handling abrupt novelties where detection, symbolic characterization, and reasoning are required. Nevertheless, their work may
encounter impasses when the available understanding of the environment is insufficient for adapting to changes (such as obstructive
novelties). The architecture we propose detects changes in the world either through new visual information or through comparing
expected models of the world and adapts accordingly to keep performing despite these changes being novel, abrupt, uninformed, and
of diverse forms. Our architecture includes a complete strategy for exploring the environment when a change is detected, abstracting
information about it, and learning to adapt to it.

Recent advancements in the development of fault-tolerant systems have significantly contributed to domains such as network
systems [34], sensor networks [59,57], unmanned aerial vehicles (UAVs) [22], and spacecraft [10]. These methods, however, are
largely domain-specific, which highlights the need for more versatile architectures. Our approach introduces a suite of methods and
algorithms designed with a focus on universality, enabling their adaptation for open-world novelty handling in diverse systems.

7. Limitations and future work

The comprehensive multi-stage evaluations demonstrated that the proposed components and their embedding in a fully functional
cognitive agent architecture are able to detect and accommodate a large variety novelties even without prior foreknowledge of what
novelties to expect. Of course, this is only a start and the proposed methods and components can and must be extended to cover a
broader set of novelties in more open-world environments. We will briefly address some of the limitations and directions for future
work.

Subsymbolic modalities and the extraction of symbolic information. While the proposed architecture included visual novelty detection
methods based on images, we did not use visual processing for localizing novelties or generating environmental state descriptions.
Visual processing could also be used to model the actions of other agents over time. A more faithful evaluation, closer to the real
world, could require agents to use only perception-based processing and ignore any pre-processed symbolic descriptions. Moreover,
since other modalities like sound might be important for real-world tasks, our present architecture would have to be augmented
to handle those perceptual components, utilizing similar techniques to those employed for visual novelty detection (e.g., to extract
symbolic descriptions from audio such as new words or speech elements). Finally, given the relatively high false positive rates
observed in our visual detector evaluations, developing improved methods that better control false positive rates could make real-
world applications possible.

Novelty handling limitations. The agent architecture cannot handle conceptual novelties and novel ontological categories. In addition,
there are some novelties that our agent cannot detect due to implementation limitations, even though they could, in principle, be
22

detected and handled by our architecture. Such novelties include higher-order novelties (i.e., novelties in properties of properties

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

or properties of relations, etc.) as well as elements of the world that the agent cannot sense (i.e., sound). Finally, in non-episodic
environments with irreversible actions, the executor learner may, during exploration, eliminate every possible solution path.

Other types of environments. While the environments we used for evaluations can get fairly complex, the employed tasks were
reasonably simple and did not involve drastic changes to the environment. Moreover, discrete abstractions in terms of space and
time were also simplifications that allowed us to focus on the core problems of novelty handling. Ultimately real-world agents will
have to deal with the continuity of real-time and real-space tasks. However, note that our theoretical framework is not limited to
discrete states and thus still applies to a wide range of real-world problems that can be addressed by a system that at the core operates
on discrete symbolic representations that abstract over continuous dimensions. To cope with continuous states, we can use various
components to discretize space and time. For simple cases, we can directly discretize continuous variables produced by the Domain
Interface. For complex cases, the Domain Interface can pass in continuous information and have it discretized by a learning model
subcomponent within the Neural Inference module.

Evaluation of agent performance. There is an intrinsic tension in our system evaluations between the implicit goal to find novelties
and the explicit goal to perform the pogostick task. Some of the failures to find novelties are thus due to the agent’s pursuit of its
explicit goal, which always takes precedence over finding novelties. Generally, the agent will only explore novelties that directly
affect it while solving the task; its investigation of novel entities in the environment as discussed at in Section 4.3 is limited to in
order to allow the agent to abandon novelty exploration in favor of its explicit goal of task-solving. This raises the question of how
novelty detection should be evaluated in general: should it be part of another task (as in our case), or should there be a separate goal
in which the agent might be rewarded specifically for novelty detection? In the latter case, the agent could then explicitly trade off
the novelty detection task with the primary task. Of course, novelty detection and characterization could be also made the only task,
but this approach seems quickly infeasible and pointless in environments with too many objects to investigate.

Interpretability There is an important final point to be highlighted about evaluations of novelty detection and accommodation: it is
one thing to measure the extent to which an agent can handle prohibitive novelties or obstructive, because the agent cannot accomplish
the task without “getting around” them, but whether the agent detected them (if it does not explicitly indicate detection), or whether
it incorporated the novelty into its knowledge base in a way that matches our expectations, is another question. The latter case
requires the agent to use our ontology and conceptual system, or at least one that we understand, but there is no guarantee that the
way the agent recorded the novelty in its own internal representations will match with such a system. While symbolic representations
are at least introspectible and new symbols can be traced back to how they originated in the agent, the subsymbolic components
might not be amenable to those kinds of human introspection. It is possible that “explainability mechanisms” (developed for neural
networks) might be able to address this problem, at least to some extent, but likely additional mechanisms and representations will
be needed to understand what the agent has learned and how it characterized its new knowledge.

8. Conclusion

The aim of this paper was to present a novel cognitive architecture framework for handling novelties in open worlds. The proposed
framework for embodied agents (with sensors and effectors) consists of both symbolic and subsymbolic components that together
synergistically uses logical and statistical inferences for detecting novelties as well as offline and online machine-learning techniques
for accommodating novelties. Extensive multi-stage evaluations of an architecture instance of the framework performing a crafting
task in a Minecraft-inspired simulation environment demonstrated that the proposed methods can usually detect, to some extent
characterize, and often accommodate several types of novelties, such as novel objects or novel agents.

These encouraging results point the way for future developments. Possible improvements could include the addition of other
subsymbolic input modalities like sound or tactile sensors, extended symbolic inference and novelty exploration mechanisms that
use planners to plan experiments for discovery instead of fixed strategies, and yet better ways for quickly experimenting with
objects and actions in the environment to discover solutions to unforeseen and unexpected problems. The overall lesson is that more
emphasis needs to be placed on problem-solving and solution discovery during task performance compared to pre-training and initial
knowledge engineering. Only when we have solved the problem of how to effectively determine what to try in the interest of finding
novelties that enable solutions to the task at hand will our artificial agents have made the full transition from closed to open worlds.

CRediT authorship contribution statement

Shivam Goel: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Visualization,
Writing – original draft, Writing – review & editing. Panagiotis Lymperopoulos: Conceptualization, Data curation, Formal analy-
sis, Investigation, Methodology, Software, Validation, Visualization, Writing – original draft, Writing – review & editing. Ravenna
Thielstrom: Conceptualization, Data curation, Investigation, Methodology, Software, Validation, Visualization, Writing – original
draft, Writing – review & editing. Evan Krause: Conceptualization, Data curation, Investigation, Methodology, Software, Validation,
Writing – original draft, Writing – review & editing. Patrick Feeney: Conceptualization, Data curation, Investigation, Method-
ology, Software, Validation, Visualization, Writing – original draft, Writing – review & editing. Pierrick Lorang: Data curation,
Investigation, Methodology, Software, Validation, Writing – original draft. Sarah Schneider: Conceptualization, Data curation, In-
23

vestigation, Methodology, Software, Validation, Visualization, Writing – original draft, Writing – review & editing. Yichen Wei: Data

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

curation, Methodology, Software, Validation, Visualization. Eric Kildebeck: Data curation, Investigation, Methodology, Resources,
Software, Validation, Writing – original draft, Writing – review & editing. Stephen Goss: Data curation, Investigation, Methodol-
ogy, Resources, Software, Validation. Michael C. Hughes: Conceptualization, Formal analysis, Funding acquisition, Investigation,
Methodology, Project administration, Resources, Supervision, Writing – original draft, Writing – review & editing. Liping Liu: Con-
ceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources,
Supervision, Validation, Writing – original draft, Writing – review & editing. Jivko Sinapov: Conceptualization, Formal analysis,
Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Writing – original draft,
Writing – review & editing. Matthias Scheutz: Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology,
Project administration, Resources, Supervision, Visualization, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing inter-
ests: Panagiotis Lymperopoulos reports financial support was provided by Defense Advanced Research Projects Agency, grant number
W911NF-20-2-0006. Shivam Goel reports financial support was provided by Defense Advanced Research Projects Agency, grant num-
ber W911NF-20-2-0006. Ravenna Thielstrom reports financial support was provided by Defense Advanced Research Projects Agency,
grant number W911NF-20-2-0006. Evan Krause reports financial support was provided by Defense Advanced Research Projects
Agency, grant number W911NF-20-2-0006. Patrick Feeney reports financial support was provided by Defense Advanced Research
Projects Agency, grant number W911NF-20-2-0006. Pierrick Lorang reports financial support was provided by Defense Advanced
Research Projects Agency, grant number W911NF-20-2-0006. Sarah Schneider reports financial support was provided by Defense
Advanced Research Projects Agency, grant number W911NF-20-2-0006. Yichen Wei reports financial support was provided by De-
fense Advanced Research Projects Agency, grant number W911NF-20-2-0006. Eric Kildebeck reports financial support was provided
by Defense Advanced Research Projects Agency, grant number W911NF-20-2-0006. Stephen Goss reports financial support was
provided by Defense Advanced Research Projects Agency, grant number W911NF-20-2-0006. Michael C. Hughes reports financial
support was provided by Defense Advanced Research Projects Agency, grant number W911NF-20-2-0006. Liping Liu reports finan-
cial support was provided by Defense Advanced Research Projects Agency, grant number W911NF-20-2-0006. Jivko Sinapov reports
financial support was provided by Defense Advanced Research Projects Agency, grant number W911NF-20-2-0006. Matthias Scheutz
reports financial support was provided by Defense Advanced Research Projects Agency, grant number W911NF-20-2-0006.

Data availability

Polycraft code is proprietary, Novelgridworlds code is open-source. Various components of the architecture may be made available
upon request.

Appendix A

A.1. Agent implementation

The proposed novelty detection and accommodation capabilities and were evaluated in two different environments, described
here. For all evaluations, we created a Polycraft Interface Component (however, it works identically with novelgridworlds). Upon
any Sense action taken by the agent, this component parses Polycraft’s sensory information from a JSON format into the first-order
logic predicate form used by the rest of the architecture.

The KBis implemented as a set of facts and rules in Prolog. Prolog is queried every time the truth value of a fact is needed, such
as when the preconditions and postconditions of an action are being checked. The set of Prolog facts is translated to PDDL to be
inserted into a problem file. Actions are written in our Action Script Language, ASL, which is also translated into PDDL as a planning
domain. Our Symbolic Planner can be configured to use any PDDL planner, and for this work we’re using an off-the-shelf planner,
the fast-forward planning system Metric-FF. During planning, the PDDL domain and problem files are dynamically generated by
scraping information from KBI and the action database. The action database contains the set of all actions that can be executed by
the agent, and is stored in the GOAL MANAGER component. When populating the PDDL domain, we filter for actions that have at
least one known effect, so they can be utilized by the planner.

Time spent exploring. The amount of time that the agent may wish to spend on any one exploration strategy mentioned in Section 4.3
is domain-specific. In our implementation with Polycraft, because our agent is being evaluated on whether it can achieve success
before a time-out, certain phases of exploration are restricted to a set time limit, such as the Knowledge Discovery phase. This
phase occurs before the agent even generates a plan to achieve the main task goal, so it is important that the agent does not waste
time exploring a novelty such that it does not have enough time left over to actually solve the task. The search space of Operator
Discovery strategies (other than reinforcement learning, which we allow to keep exploring until Polycraft times out due to it being
the final strategy employed when all other strategies have failed) is intentionally cut down in order to limit exploration time as
well. Precondition Discovery, for example, only focuses on adding variations of the holding(self,X) predicate, for all X where X is a
novel object in the environment, as this predicate represents a prominent state aspect in Polycraft. While this has the advantage of
24

ensuring the agent does not spend too much time on any one exploration strategy, it also creates large blind spots for the agent’s

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

Fig. 7. Architecture diagram of the neural network underlying the agent model. The map of the environment is summarized into a vector and concatenated with state
and action-history information. The network outputs probabilities for each action. ⊕ represents concatenation.

novelty solving abilities (again, reinforcement learning is utilized as a last resort to fill some of these gaps in the base agent’s abilities,
the success of which is discussed in Section 5.3.2).

Operator failure strategy selection. Choosing which strategies to follow in the Total Effect Failure policy, and how those strategies
were executed, was implemented based on the specific operator that failed. For example, Strategy 1 (update operator and replan) is
not attempted when a movement operator fails, as movement is an extremely essential part of task-solving in Polycraft and deleting
its expected effects could entirely destroy the agent’s ability to move anywhere. Instead, we consider the more likely explanation
that the agent’s knowledge base is inaccurate and the agent believes its path is clear when it is not, which is an error addressed by
Strategy 2 (repeat the action). Similarly, Strategies 3 and 4 are excluded for failed operators that have more than one parameter (and
thus a larger state space to explore) out of a reluctance to spend excessive time symbolically exploring a novelty instead of simply
trying to find an alternative plan that avoids the novelty. These heuristics are not necessarily applicable to all other tasks or domains,
but we find they are effective in Polycraft.

The initial ontology provided to the agent is accessible on this link: https://tufts .box .com /s /pab7xze409uhe5n9461m7x8dz0dn
9xg9.

A.1.1. AGENT MODEL implementation details

State representation. From the Polycraft symbolic state descriptions obtained through DOMAIN INTERFACE, a set of inputs 𝑠′
𝑐
= (𝐱𝑐 , 𝑀)

are derived for the neural networks of the AGENT MODEL for each actor 𝜄 in the state description. The vector 𝐱𝜄 ∈ℝ𝑑 is a vectorized
representation of the actor’s internal states such as its inventory, inferred by tracking its actions throughout a trajectory. The matrix
𝑀 ∈ {0, 1}40×40×𝑑2 is a representation of the map of the environment, as a 40x40 square is sufficient to hold every configuration
of the pre-novelty polycraft map. The third dimension of 𝑀 with size 𝑑2 ∈ ℕ stores a binary indicator indicating which known
environment entity is present in each position.

As mentioned in the text, unlikely actions are detected using a threshold calculated over a validation set of state-action pairs from
pre-novelty environments.

Model architecture. Each neural network in the implementation of AGENT MODEL for the Polycraft domain is composed of 3 convolu-
tional layers with filter size (3,3) and stride 1, and 4 multilayer perceptrons with 1 hidden layer. All layers have a hidden dimension
of 64. All layers except the output layer use ReLU activations. The architecture is illustrated in Fig. 7 and summarized as follows:

𝐻𝑀 = 𝐶𝑁𝑁𝑀 (𝑚𝑙𝑝𝑀 (𝑀))

𝐡𝑀 = 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝐻𝑀)

𝐡𝑥 =𝑚𝑙𝑝𝑥(𝐱)

𝐲̂ =𝑚𝑙𝑝([𝐡𝑀,𝐡𝑥]).

The output vector 𝐲̂ represents logits that compute probabilities for each action using a softmax layer.

Additional training details. The agent model neural networks are trained for a total of 100 epochs with early stopping based on the
validation loss, with a patience value of 5. They are trained using the Adam optimizer with a learning rate of 0.001. Class weights
are utilized during training to ensure the model does not overfit the most common actions taken by other actors (such as navigation
commands). Weights are computed based on the frequency of classes (actions) in the dataset so that all classes (actions) are weighed
equally.

A.1.2. VISION MODEL implementation details

Image preprocessing. Before splitting into patches, input images are cropped to remove the “Minecraft item bar” by removing the
bottom 22 pixel rows of the images. For training, patches of size 32 × 32 pixels are sampled randomly from the cropped images and
25

normalized between 0 and 1. Additionally, we add Gaussian noise with a standard deviation of 1
40 is added to the input data.

https://tufts.box.com/s/pab7xze409uhe5n9461m7x8dz0dn9xg9
https://tufts.box.com/s/pab7xze409uhe5n9461m7x8dz0dn9xg9

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

Table 11

Hyperparameters of EXECUTOR LEARNER for reinforcement learning.

Hyperparameter Value

𝜖max 0.3
𝜖min 0.05
𝜌max 0.35
𝜌min 0.05
𝜆 decay − log(0.01)

50
decay rate 0.99
network weight update rate 1
positive reinforcement 1000
negative reinforcement -100
step cost -1
number of episodes checked for convergence 100
successful runs required to decide convergence 20

Training settings. Hyperparameter tuning of the latent representation dimension takes place over the values 50, 100, and 200 and
batch sizes 32, 64, and 128. The selected value for the representation dimension is 100 and the batch size is set to 128. Training
takes place over 8000 with a learning rate of 0.001 with the Adam optimizer and default Pytorch values for other parameters (0
weight decay and (𝛽1, 𝛽2) = (0.9, 0.999)). Additional details on the architecture and training settings are available in [13].

A.2. EXECUTOR LEARNER implementation details

The EXECUTOR LEARNER uses one neural network for each operator. Each neural network has 1 hidden layer with 128 neurons.
Table 11 summarizes all hyperparameters for the RAPid-learn [16] algorithm.

A.3. Non-novelty aware agent

The non-novelty aware agent is a simple PDDL-based planning agent. The domain and problem files as well as the code used to
integrate it with the Polycraft domain are available here: https://tufts .box .com /s /qeypcyn6xyq60vvm6l0adqu647ltttgw.

A.4. Simulation setup and hardware details

All systemic evaluations are run on the LoneStar6 HPC in Texas Advanced Computing Center. Simulation details for the Polycraft
domain are available in [19]. Training for neural models took place on a server with 4 NVIDIA RTX 2080Ti GPUs, and an Intel(R)
Core(TM) i9-9940X processor with 130 GB of memory

A.5. Executor learner novelty handling discussion

In this section, we provide a detailed discussion of some novelty scenarios in the internal evaluation of the EXECUTOR LEARNER

agent.
In the This is just random novelty, we showcase that the agent with an EXECUTOR LEARNER can learn to adapt to stochasticity in

the environment. Table 4 shows that the EXECUTOR LEARNER learner configuration successfully solves the task in 20% of the cases,
whereas the symbolic explorer solves it in a mere 2%.

In Convince me novelty, we observe that the EXECUTOR LEARNER aids the agent in learning to accommodate a beneficial novelty.
Table 4 shows that in this novelty, the base agent’s symbolic explorer fails to solve the task, while the EXECUTOR LEARNER helps
solve the task almost 60% of the time.

In the Sapling can’t grow here! novelty, we observe that the EXECUTOR LEARNER helps accommodate about 10% of the time. The
goal of this novelty was to showcase the learning of spatial aspects of the learner. However, we could not observe the expected
performance due to implementation limitations. The EXECUTOR LEARNER has access to the same higher-level operators as the base
agent. However, to learn the spatial aspects of this novelty, the agent should have access to the lower-level navigation actions to
learn a successful policy to solve the task.

In the show me your card first novelty, we demonstrate that the RL agent can learn a sequence of operators to accommodate
the novelties. The search space of sequences of operators is intractable for the other exploration strategies, as they would have to
explicitly enumerate all combinations of operators of different lengths. Instead, the RL-based learner has a more flexible knowledge
representation in the form of neural network parameters, which allows it to generalize the knowledge it gains to unexplored states.
That, combined with its knowledge-guided exploration strategy, makes it more efficient in searching over the sequences of operators.
From the results in Table 4, the agent configuration that uses the EXECUTOR LEARNER successfully solves the task 20% of the time,
26

while the symbolic explorer can never accommodate it.

https://tufts.box.com/s/qeypcyn6xyq60vvm6l0adqu647ltttgw

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

Table 12

Results comparing configurations of the agents in the systemic evaluation of known novelties.

Agent 𝐹𝑁𝐶𝐷𝑇 CDT% FP% NRP% GA%

Base 0.41 83.8 3.0 76.4 67.7
Base+AGENT MODEL 0.43 84.6 6.70 75.4 67.0
Base+EXECUTOR LEARNER 0.57 85.9 2.5 76.5 69.0
Base + AGENT MODEL + EXECUTOR LEARNER 0.42 88.1 1.7 72.6 65.0

Table 13

Results comparing configurations of the agents in the systemic evaluation of unknown novelties.

Agent 𝐹𝑁𝐶𝐷𝑇 CDT% FP% NRP% GA%

Base 1.34 79.9 3.7 64.8 57.1
Base+AGENT MODEL 0.91 89.5 4.9 65.5 57.2
Base+EXECUTOR LEARNER 1.23 81.00 1.9 68.2 61.3
Base + AGENT MODEL + EXECUTOR LEARNER 0.33 89.6 1.5 58.1 54.7

A.6. Additional evaluation data

In this section, we include additional results from our systemic evaluations.
Tables 12 and 13 break down the performance of the 4 accommodation-capable agent configurations between known and un-

known novelties. It is important to note that the agent configurations including the AGENT MODEL component perform better on the
unknown set. This is because the novelties related to other agents were not balanced across the two sets, making the unknown set
contain proportionally more such novelties. The agent model was able to detect those novelties often and as such the performance
on that set is higher.

The dataset imbalance originates in the development cycle of the agent. The agent was developed in three phases, with each
phase focusing on different categories of novelties. In each phase, a small number of novelties from each category were known, and
the rest were unknown. At the end of each phase, the unknown novelties for that phase were revealed. In the paper, we present the
final version of the system, in which unknown novelties from the first two phases are revealed and the third are hidden. Therefore,
the set of unknown novelties consists of novelties from phase 3 categories, which are Environments, Goals and Events.

A.7. Additional examples

New item needed to craft pogostick. This novelty scenario belongs to the object category. In this scenario, a new unknown item (gold)
is required in the crafting recipe to craft a pogostick. The agent must now learn to associate the recipe ingredient “gold” with a
previously unknown resource block that now exists in the world. It must mine that block to acquire the gold and then use it to craft
a pogostick.

Explanation. Before executing the pogostick goal, the agent detects the presence of the gold in the environment as a novelty
through the GOAL MANAGER’s initial comparison of the agent’s knowledge base to the current state of the world. Before the GOAL
MANAGER attempts to achieve the pogostick goal, the NOVELTY EXPLORATION component enters Knowledge Discovery and generates
subgoals that involve the novel object. The GOAL MANAGER executes these subgoals. One of these subgoals, break(gold), results in
the effect of gold being deposited into the agent’s inventory, which the GOAL MANAGER observes through the DOMAIN INTERFACE.
The Exploration component creates a new operator for break(gold) that reflects this effect and stores it in the agent’s knowledge
repository. The agent can then plan to accomplish the requirements of the novel crafting recipe (having gold in its inventory) by
mining more gold and successfully completing the task. A narrated video of our agent encountering this novelty can be viewed at
the following link: https://www .youtube .com /watch ?v =7X6EUkYcHSc.

New supplier actor. A previously unknown actor (the supplier) appears in the world (note that this is similar to the example illustrated
in Section 2). The supplier offers a pogostick if the agent performs the interact action on it. In this variant, the pogostick can no longer
be crafted, leaving the supplier as the only means of acquiring it. This scenario is categorized as an Agent novelty and constitutes a
beneficial novelty for our agent, as acquiring a pogostick can be achieved with a shorter plan than usual.

Explanation. Before executing the pogostick goal, the agent detects the presence of the supplier in the environment in the GOAL
MANAGER’s initial comparison of the agent’s knowledge base to the actual state of the world. Before the GOAL MANAGER attempts to
achieve the pogostick goal, the NOVELTY EXPLORATION component enters Knowledge Discovery and generates subgoals that involve
the novel entity, including interacting with the supplier. When this happens, and the supplier deposits the pogostick into the agent’s
inventory, this is observed through the DOMAIN INTERFACE, the GOAL MANAGER notes the discrepancy between the expected effect
and the observed effect, and prompts the Exploration component to enter failed effect recovery. The Exploration component creates
a new operator for interactWith(supplier) that reflects this effect and stores the new operator in the agent’s knowledge repository.
In subsequent games, the agent can plan to obtain the pogostick immediately, using the knowledge of this beneficial novelty. A
narrated video of our agent encountering this novelty can be viewed at the following link: https://www .youtube .com /watch ?v =
27

06B6pHMakFs.

https://www.youtube.com/watch?v=7X6EUkYcHSc
https://www.youtube.com/watch?v=06B6pHMakFs
https://www.youtube.com/watch?v=06B6pHMakFs

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

Traders spawn in side rooms. The traders do not appear in the main room that the agent starts in as in pre-novelty. They appear in a
side room, which means their existence is not initially known to the agent. This is categorized as a Relations novelty.

Explanation. The agent needs to interact with the traders to get the available trades and later use the trades to solve the task.
Without the knowledge of the trades, the agent cannot solve the task. Therefore, upon discovering the absence of traders in the main
room, the agent cannot find a successful plan and encounters this novelty as prohibitive novelty.

The NOVELTY EXPLORATION component executes the recovery policy for prohibitive novelties, which executes operators to explore
the unobserved parts of the environment. One of these operators is exploreRooms(), in which the agent enters all the side rooms
and observes what is inside them, including the trader actors. Upon knowing their location, the agent interacts with the traders to
receive information about their trade offers, generating new trade operators to represent them. From here, the agent resumes normal
operation after replanning with the new operators and successfully solves the task.

A narrated video of our agent encountering this novelty can be viewed here https://www .youtube .com /watch ?v =gwxdPXZiYsE.

Different items in chests. In this novelty scenario, the ingredients to craft the pogostick are scattered throughout the environment
inside various identical chests, and these ingredients are not obtainable otherwise. This is categorized as Object novelty.

Explanation. The base agent often fails to solve this problem because it does not distinguish between chests and assumes that
opening each chest yields the same contents. Initially, this novelty prohibits the agent from being able to plan to craft a pogostick,
which prompts the Planning Failure recovery policy. During this policy, the agent will open a chest as an exploratory action to
discover what lies inside it. When opening a chest and finding unexpected contents, such as rubber, the agent enters the Partial
Effects Failure recovery policy and creates a new operator to reflect that opening a chest yields rubber. From this point, however, the
agent still fails to plan because it needs more of the ingredients hidden in the chests but assumes that all chests only contain rubber.
It eventually will give up after failing to accommodate the novelty.

However, the base+EXECUTOR LEARNER agent is successful at accommodating this novelty. Instead of giving up, the agent
begins exploring using reinforcement learning. The Executor Learner places a higher priority on executing novel operators during
reinforcement learning exploration, and because the agent has already created a novel operator due to the Partial Effects Failure
policy, this operator is attempted often. This eventually results in the agent collecting ingredients from all the chests and being
able to replan to solve the task. This is an interesting example of the EXECUTOR LEARNER overcoming unforeseen limitations of the
symbolic reasoner implementation: The agent assumes all chests in the environment are interchangeable, which leads to this failure.
However, the EXECUTOR LEARNER has much more flexibility in its knowledge representations and is, therefore, able to discover an
executor that accommodates the novelty.

References

[1] D. Abati, A. Porrello, S. Calderara, R. Cucchiara, Latent space autoregression for novelty detection, arXiv :1807 .01653, 2019.
[2] D. Abel, Y. Jinnai, S.Y. Guo, G. Konidaris, M. Littman, Policy and value transfer in lifelong reinforcement learning, in: ICML, PMLR, 2018, pp. 20–29.
[3] B.D. Argall, S. Chernova, M. Veloso, B. Browning, A survey of robot learning from demonstration, Robot. Auton. Syst. 57 (2009) 469–483.
[4] M. Bain, C. Sammut, A framework for behavioural cloning, in: Machine Intelligence, vol. 15, 1995, pp. 103–129.
[5] Z. Bing, D. Lerch, K. Huang, A. Knoll, Meta-reinforcement learning in non-stationary and dynamic environments, IEEE Trans. Pattern Anal. Mach. Intell. 14

(2022), https://doi .org /10 .1109 /TPAMI .2022 .3185549.
[6] T.E. Boult, S. Cruz, A.R. Dhamija, M. Gunther, J. Henrydoss, W.J. Scheirer, Learning and the unknown: surveying steps toward open world recognition, in:

Proceedings of the AAAI Conference on Artificial Intelligence, 2019, pp. 9801–9807.
[7] D. Bryce, J. Benton, M.W. Boldt, Maintaining evolving domain models, in: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelli-

gence, AAAI Press, 2016, pp. 3053–3059.
[8] J. Cheng, N. Vasconcelos, Learning deep classifiers consistent with fine-grained novelty detection, in: 2021 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), IEEE, Nashville, TN, USA, 2021, pp. 1664–1673.
[9] W.C. Cheung, D. Simchi-Levi, R. Zhu, Reinforcement learning for non-stationary Markov decision processes: the blessing of (more) optimism, in: ICML, PMLR,

2020, pp. 1843–1854.
[10] D. Codetta-Raiteri, L. Portinale, Dynamic Bayesian networks for fault detection, identification, and recovery in autonomous spacecraft, IEEE Trans. Syst. Man

Cybern. Syst. 45 (2014) 13–24.
[11] S. Daftry, J.A. Bagnell, M. Hebert, Learning transferable policies for monocular reactive mav control, in: International Symposium on Experimental Robotics,

Springer, 2016, pp. 3–11.
[12] T. Eiter, M. Šimkus, Linking open-world knowledge bases using nonmonotonic rules, in: Logic Programming and Nonmonotonic Reasoning: 13th International

Conference, LPNMR 2015, Lexington, KY, USA, September 27-30, 2015. Proceedings 13, Springer, 2015, pp. 294–308.
[13] P. Feeney, S. Schneider, P. Lymperopoulos, L. Liu, M. Scheutz, M.C. Hughes, Novelcraft: a dataset for novelty detection and discovery in open worlds, https://

doi .org /10 .48550 /ARXIV .2206 .11736, 2022.
[14] F. Feng, B. Huang, K. Zhang, S. Magliacane, Factored Adaptation for Non-stationary Reinforcement Learning, 2022, pp. 1–32, arXiv :2203 .16582v2.
[15] C. Gehring, M. Asai, R. Chitnis, T. Silver, L. Kaelbling, S. Sohrabi, M. Katz, Reinforcement learning for classical planning: viewing heuristics as dense reward

generators, in: Proceedings of the International Conference on Automated Planning and Scheduling, vol. 32, 2022, pp. 588–596.
[16] S. Goel, Y. Shukla, V. Sarathy, M. Scheutz, J. Sinapov, Rapid-learn: a framework for learning to recover for handling novelties in open-world environments, in:

IEEE International Conference on Development and Learning (ICDL), London, UK, September 12-15, 2022, IEEE, 2022, pp. 1–8, https://arxiv .org /pdf /2206 .
12493.

[17] S. Goel, G. Tatiya, M. Scheutz, J. Sinapov, Novelgridworlds: a benchmark environment for detecting and adapting to novelties in open worlds, in: Proceedings
of 13th Workshop on Adaptive and Learning Agents (ALA) at the International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), 2021.

[18] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial networks, Adv. Neural Inf. Process.
Syst. 3 (2014), https://doi .org /10 .1145 /3422622.

[19] S.A. Goss, R.J. Steininger, D. Narayanan, D.V. Olivença, Y. Sun, P. Qiu, J. Amato, E.O. Voit, W.E. Voit, E.J. Kildebeck, Polycraft world ai lab (pal): an extensible
platform for evaluating artificial intelligence agents, arXiv preprint, arXiv :2301 .11891, 2023.

[20] L. Guan, S. Sreedharan, S. Kambhampati, Leveraging approximate symbolic models for reinforcement learning via skill diversity, arXiv preprint, arXiv :2202 .
28

02886, 2022.

https://www.youtube.com/watch?v=gwxdPXZiYsE
http://refhub.elsevier.com/S0004-3702(24)00047-X/bibDD31E4C12E04E4D4CA437CAD1175A42Fs1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bibF28A40A114D9FF364FEAD72831E9AF96s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib7FEDE04CACB4F9165FD199C8D16CDAADs1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib0BFAC39908002BCCDE187CF6F72B5BE4s1
https://doi.org/10.1109/TPAMI.2022.3185549
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib44058DD2D90B5CF106F6B928CBCBA9F5s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib44058DD2D90B5CF106F6B928CBCBA9F5s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib71A03FCBF380519EA3883912487E1F16s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib71A03FCBF380519EA3883912487E1F16s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bibE764B7FA520B4F7812EC34EAE232E44Bs1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bibE764B7FA520B4F7812EC34EAE232E44Bs1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bibEBEB889627FE3EE8B230662E79B9DBB7s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bibEBEB889627FE3EE8B230662E79B9DBB7s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib193A0C5671A91FECE4626D2C31044F9Ds1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib193A0C5671A91FECE4626D2C31044F9Ds1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bibA0435A37BBEE6002E9EF3D148C60A922s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bibA0435A37BBEE6002E9EF3D148C60A922s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bibE009D26C4E071B8E33C73B93530230E4s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bibE009D26C4E071B8E33C73B93530230E4s1
https://doi.org/10.48550/ARXIV.2206.11736
https://doi.org/10.48550/ARXIV.2206.11736
http://refhub.elsevier.com/S0004-3702(24)00047-X/bibC1708C3444F63ABD7FB3017A1317F9BBs1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib4FEDA0CC9FD6C4F846E85D6A9E65E6E8s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib4FEDA0CC9FD6C4F846E85D6A9E65E6E8s1
https://arxiv.org/pdf/2206.12493
https://arxiv.org/pdf/2206.12493
http://refhub.elsevier.com/S0004-3702(24)00047-X/bibF7D9E9CC96D6A8204A0B72D4A9A4FC0Es1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bibF7D9E9CC96D6A8204A0B72D4A9A4FC0Es1
https://doi.org/10.1145/3422622
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib52436A3B8C64DF9C986DD540CA6C1132s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib52436A3B8C64DF9C986DD540CA6C1132s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib183BAAC86969CD9DCD70A0AB37773774s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib183BAAC86969CD9DCD70A0AB37773774s1

Artificial Intelligence 331 (2024) 104111S. Goel, P. Lymperopoulos, R. Thielstrom et al.

[21] C. Hewitt, P.d. Jong, Analyzing the Roles of Descriptions and Actions in Open Systems, Technical Report, Massachusetts Inst of Tech Cambridge Artificial
Intelligence Lab, 1983.

[22] Y. Hsiao, Z. Wan, T. Jia, R. Ghosal, A. Mahmoud, A. Raychowdhury, D. Brooks, G. Wei, V. Reddi, Mavfi: an end-to-end fault analysis framework with anomaly
detection and recovery for micro aerial vehicles, in: 2023 Design, Automation & Test in Europe Conference & Exhibition (Date), 2023.

[23] R.T. Icarte, T.Q. Klassen, R.A. Valenzano, S.A. McIlraith, Reward machines: exploiting reward function structure in reinforcement learning, J. Artif. Intell. Res.
73 (2020) 173–208.

[24] M. Jin, Z. Ma, K. Jin, H.H. Zhuo, C. Chen, C. Yu, Creativity of ai: automatic symbolic option discovery for facilitating deep reinforcement learning, arXiv preprint,
arXiv :2112 .09836, 2021.

[25] R. Karia, S. Srivastava, Relational abstractions for generalized reinforcement learning on symbolic problems, in: Lud De Raedt (Ed.), Proceedings of the
Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, International Joint Conferences on Artificial Intelligence Organization, 2022,
pp. 3135–3142, https://doi .org /10 .24963 /ijcai .2022 /435.

[26] K. Khetarpal, M. Riemer, I.R. Doina Precup, Towards continual reinforcement learning: a review and perspectives, arXiv :2012 .13490v1, 2020.
[27] D.P. Kingma, M. Welling, Auto-encoding variational Bayes, Computing Research Repository (CoRR), arXiv :1312 .6114, 2014.
[28] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A.A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath,

D. Kumaran, R. Hadsell, Overcoming catastrophic forgetting in neural networks, Proc. Natl. Acad. Sci. 114 (2017) 3521–3526, https://doi .org /10 .1073 /pnas .
1611835114.

[29] H. Kokel, A. Manoharan, S. Natarajan, B. Ravindran, P. Tadepalli, Reprel: integrating relational planning and reinforcement learning for effective abstraction,
in: ICAPS, 2021, pp. 533–541.

[30] B. Lakshminarayanan, A. Pritzel, C. Blundell, Simple and scalable predictive uncertainty estimation using deep ensembles, in: Advances in Neural Information
Processing Systems, 2017.

[31] E. Lecarpentier, D. Abel, K. Asadi, Y. Jinnai, E. Rachelson, M.L. Littman, Lipschitz lifelong reinforcement learning, arXiv preprint, arXiv :2001 .05411, 2020.
[32] Y. Lee, P. Kang, Anovit: unsupervised anomaly detection and localization with vision transformer-based encoder-decoder, https://doi .org /10 .48550 /ARXIV .

2203 .10808, 2022.
[33] H. Li, R. Dou, A. Keil, J.C. Principe, A self-learning cognitive architecture exploiting causality from rewards, Neural Netw. 150 (2022) 274–292, https://

doi .org /10 .1016 /j .neunet .2022 .02 .029.
[34] Z. Li, L. Yuan, P. Mohapatra, C.N. Chuah, On the analysis of overlay failure detection and recovery, Comput. Netw. 51 (2007) 3828–3843.
[35] S. Liang, Y. Li, R. Srikant, Enhancing the reliability of out-of-distribution image detection in neural networks, in: International Conference on Learning Repre-

sentations, 2018, https://openreview .net /forum ?id =H1VGkIxRZ.
[36] P. Lorang, S. Goel, P. Zips, J. Sinapov, M. Scheutz, Speeding-up continual learning through information gains in novel experiences, in: 4th Planning and

Reinforcement Learning (PRL) Workshop at IJCAI-2022, 2022.
[37] P. Lymperopoulos, Y. Li, L. Liu, Exploiting variable correlation with masked modeling for anomaly detection in time series, in: NeurIPS 2022 Workshop on

Robustness in Sequence Modeling, 2022.
[38] S. Marsland, J. Shapiro, U. Nehmzow, A self-organising network that grows when required, Neural Netw. 15 (2002) 1041–1058.
[39] N. Masuyama, N. Amako, Y. Yamada, Y. Nojima, H. Ishibuchi, Adaptive resonance theory-based topological clustering with a divisive hierarchical structure

capable of continual learning, IEEE Access 10 (2022) 68042–68056.
[40] D. McDermott, J. Doyle, Non-monotonic logic i, Artif. Intell. 13 (1980) 41–72.
[41] F. Muhammad, V. Sarathy, G. Tatiya, S. Goel, S. Gyawali, M. Guaman, J. Sinapov, M. Scheutz, A novelty-centric agent architecture for changing worlds, in:

Proceedings of 20th International Conference on Autonomous Agents and Multiagent Systems, 2021.
[42] R.K. Nayyar, P. Verma, S. Srivastava, Differential assessment of black-box ai agents, Proc. AAAI Conf. Artif. Intell. 36 (2022) 9868–9876, https://doi .org /10 .

1609 /aaai .v36i9 .21223.
[43] G. Pang, C. Shen, L. Cao, A.V.D. Hengel, Deep learning for anomaly detection: a review, ACM Comput. Surv. 54 (2022) 1–38.
[44] W.M. Piotrowski, S. Mohan, Model-Based Novelty Adaptation for Open-World AI, 2020.
[45] C. Richter, N. Roy, Safe visual navigation via deep learning and novelty detection, in: Robotics: Science and Systems XIII, 2017.
[46] M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, G. Tesauro, Learning to learn without forgetting by maximizing transfer and minimizing interference, in:

Seventh International Conference on Learning Representations, 2019.
[47] L. Ruff, J.R. Kauffmann, R.A. Vandermeulen, G. Montavon, W. Samek, M. Kloft, T.G. Dietterich, K.R. Müller, A unifying review of deep and shallow anomaly

detection, Proc. IEEE 109 (2021) 756–795.
[48] V. Sarathy, D. Kasenberg, S. Goel, J. Sinapov, M. Scheutz, Spotter: extending symbolic planning operators through targeted reinforcement learning, in: Proceed-

ings of the 20th International Conference on Autonomous Agents and MultiAgent Systems, 2021, pp. 1118–1126.
[49] T. Schlegl, P. Seeböck, S.M. Waldstein, G. Langs, U. Schmidt-Erfurth, f-anogan: fast unsupervised anomaly detection with generative adversarial networks, Med.

Image Anal. 54 (2019) 30–44, https://doi .org /10 .1016 /j .media .2019 .01 .010.
[50] J. Schmidhuber, Powerplay: training an increasingly general problem solver by continually searching for the simplest still unsolvable problem, Front. Psychol.

4 (2013) 313, https://doi .org /10 .3389 /fpsyg .2013 .00313.
[51] L.E.B. da Silva, I. Elnabarawy, D.C. Wunsch II, A survey of adaptive resonance theory neural network models for engineering applications, Neural Netw. 120

(2019) 167–203.
[52] L. Steccanella, A. Jonsson, State representation learning for goal-conditioned reinforcement learning, arXiv preprint, arXiv :2205 .01965, 2022.
[53] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, 2018.
[54] K. Talamadupula, J. Benton, S. Kambhampati, P. Schermerhorn, M. Scheutz, Planning for human-robot teaming in open worlds, ACM Trans. Intell. Syst. Technol.

1 (2010) 14:1–14:24.
[55] Q. Wang, O. Fink, L. Van Gool, D. Dai, Continual test-time domain adaptation, in: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), 2022.
[56] T. Wanyana, An Agent Architecture for Knowledge, vol. 2, Springer International Publishing, 2021.
[57] J. Xin, C. Zhou, Y. Jiang, Q. Tang, X. Yang, J. Zhou, A signal recovery method for bridge monitoring system using tvfemd and encoder-decoder aided lstm,

Measurement (2023) 112797.
[58] F. Yang, D. Lyu, B. Liu, S. Gustafson, Peorl: Integrating Symbolic Planning and Hierarchical Reinforcement Learning for Robust Decision-Making, 2018,

pp. 4860–4866.
[59] Z. Yemeni, H. Wang, W.M. Ismael, A. Hawbani, Z. Chen, Cfddr: a centralized faulty data detection and recovery approach for wsn with faults identification, IEEE

Syst. J. 16 (2021) 3001–3012.
[60] C. Zhang, C. Jiang, Q. Xu, Pretrained back propagation based adaptive resonance theory network for adaptive learning, J. Algorithms Comput. Technol. 17

(2023) 17483026231205009.
[61] Y. Zhang, X.Y. Zhang, H. Shi, OW-TAL: learning unknown human activities for open-world temporal action localization, Pattern Recognit. 133 (2023) 109027,
29

https://doi .org /10 .1016 /J .PATCOG .2022 .109027.

http://refhub.elsevier.com/S0004-3702(24)00047-X/bib17B729DE9E83613E831461AF5D0E7D03s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib17B729DE9E83613E831461AF5D0E7D03s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib74F981462207AD0C91888571F66F2A40s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib74F981462207AD0C91888571F66F2A40s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib2F5CB2F15EA12DA97A6B80B4FAD4A599s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib2F5CB2F15EA12DA97A6B80B4FAD4A599s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bibD69E53732C1FBFF81AD9C2FF74645F6Cs1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bibD69E53732C1FBFF81AD9C2FF74645F6Cs1
https://doi.org/10.24963/ijcai.2022/435
http://refhub.elsevier.com/S0004-3702(24)00047-X/bibBF0469F99E36BD90B1B217028CC6F74Es1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib3D22DA7019470D8A1E975A81EBD0C8FCs1
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
http://refhub.elsevier.com/S0004-3702(24)00047-X/bibE9268D29B88A0181424F4C32B43B14B1s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bibE9268D29B88A0181424F4C32B43B14B1s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib7FA8DC476C66845B4E074EFCCEF69747s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib7FA8DC476C66845B4E074EFCCEF69747s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib854D54FD059FCE67AEF0C75352D952DEs1
https://doi.org/10.48550/ARXIV.2203.10808
https://doi.org/10.48550/ARXIV.2203.10808
https://doi.org/10.1016/j.neunet.2022.02.029
https://doi.org/10.1016/j.neunet.2022.02.029
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib0013274D16E5691338D775A9D3553E26s1
https://openreview.net/forum?id=H1VGkIxRZ
http://refhub.elsevier.com/S0004-3702(24)00047-X/bibC735E5EEF1A82BB6977BCE1F3E297F06s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bibC735E5EEF1A82BB6977BCE1F3E297F06s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib40CACF5F8DD1620D85E15D6E7636A9D3s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib40CACF5F8DD1620D85E15D6E7636A9D3s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bibEA1399D412FF7FF4053AE4BAF02B636Fs1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib57FCB224B0BA5D0E2B80F4DA9E7B88A6s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib57FCB224B0BA5D0E2B80F4DA9E7B88A6s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib377B8349C6F8561679B0CF4943FC5A85s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib88AAC7F9196AF45D2E5952395A45E1C2s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib88AAC7F9196AF45D2E5952395A45E1C2s1
https://doi.org/10.1609/aaai.v36i9.21223
https://doi.org/10.1609/aaai.v36i9.21223
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib42DB251468AFCD794EC2E654D4B1B015s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bibB56D0B2A52D2ECFCE20ADE111986E380s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bibFE5BDBFD5481A97A52602EEE8C85AE38s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib15651961A5A6A8424652335A1C7814BCs1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib15651961A5A6A8424652335A1C7814BCs1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib99C786BDAB04432EBFD42516A6DEBA0Es1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib99C786BDAB04432EBFD42516A6DEBA0Es1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib5DA10C9AC5238715EF232D4975D60629s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib5DA10C9AC5238715EF232D4975D60629s1
https://doi.org/10.1016/j.media.2019.01.010
https://doi.org/10.3389/fpsyg.2013.00313
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib1B6E3BFC2F8D526287114AAF1EB4760Es1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib1B6E3BFC2F8D526287114AAF1EB4760Es1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib2D8D4D527C47E61896C5536092AD3FA0s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib62EA68C58CD19B9F34F70E09CA364ABBs1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bibC074973D098F340778656DAEF29A91CDs1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bibC074973D098F340778656DAEF29A91CDs1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib957B05EB2D9BFAF59947E44A46C3C7B3s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib957B05EB2D9BFAF59947E44A46C3C7B3s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib2820EC9DF1F097B691DCEF38B2F075E7s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib1BF6FF3949C51255E69D9585E586EE69s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib1BF6FF3949C51255E69D9585E586EE69s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib390E6B02BED38AB7E9B69CF5118751C2s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib390E6B02BED38AB7E9B69CF5118751C2s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib03B210554A12FF705F455B537B8C135Bs1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib03B210554A12FF705F455B537B8C135Bs1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib2D15555055403D937EE9E8F0516037D9s1
http://refhub.elsevier.com/S0004-3702(24)00047-X/bib2D15555055403D937EE9E8F0516037D9s1
https://doi.org/10.1016/J.PATCOG.2022.109027

	A neurosymbolic cognitive architecture framework for handling novelties in open worlds
	1 Introduction
	2 What is a novelty?
	3 Theoretical framework
	3.1 The formal agent-environment framework
	3.2 Novelties

	4 An architectural framework for novelty handling
	4.1 Symbolic inference
	4.1.1 Knowledge base
	4.1.2 Task planner
	4.1.3 Goal manager
	Prohibitive novelty.
	Obstructive novelty.
	Beneficial and nuisance novelty.

	4.2 Neural inference
	4.2.1 Vision model
	4.2.2 Agent model
	Behavioral modeling with behavioral cloning.
	Unlikely action detection.
	Actor type classification.

	4.3 Novelty exploration component
	4.3.1 Failure recovery
	Recovery from prohibitive novelty.
	Recovery from obstructive novelty.
	Recovery from beneficial and nuisance novelties.

	4.3.2 Operator discovery
	Precondition discovery.
	Operator variations

	4.3.3 Knowledge-guided executor learner
	Policy learning for failed executors.
	Knowledge-guided exploration of novelties.

	5 Comprehensive evaluation
	5.1 Evaluation setting
	5.2 Component-wise evaluation
	5.2.1 Vision model evaluation
	Vision model training.
	Two-round evaluation.
	Evaluation criteria.
	Results.
	Discussion.

	5.2.2 Agent model evaluation
	Evaluation criteria.
	Model training.
	Tournament-wide results.
	Episode-level results.
	Discussion.

	5.2.3 Executor learner evaluations
	Evaluation metrics.
	Discussion.

	5.3 Systemic evaluation
	5.3.1 Evaluation methodology
	Base agent.
	Base agent+AGENT MODEL.
	Base agent+EXECUTOR LEARNER.
	Base agent + AGENT MODEL + EXECUTOR LEARNER
	Vision agent
	Evaluation criteria.

	5.3.2 Results & discussion
	5.3.3 Examples
	Must break tree tap to get rubber.
	Pogoist prioritizes diamond.
	Cannot collect rubber from Birch trees.

	6 Related works
	7 Limitations and future work
	8 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

